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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1,000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH 
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lb) T 

TEMPERATURE (exact degrees) 
°C Celsius 1.8C+32 Fahrenheit °F 

ILLUMINATION 
lx lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 2.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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CHAPTER 1. INTRODUCTION 

PURPOSE AND FOCUS 

Predictive analytics is the process of using data and models to predict what may happen in the 
future. More specifically, it entails both the development of a model that uses historical data and 
the application of the model by the use of current data to forecast potential events or outcomes. 
The purpose of this report is to support agencies that are considering the integration of predictive 
analytics tools and methods into the active management and operation of traffic management 
systems (TMSs). Specifically, the report focuses on issues to consider, possible requirements to 
integrate, and potential opportunities to use predictive analytics in the context of real-time 
management and operation of TMSs. The report highlights current practices for considering, 
incorporating, and using predictive analytics in the planning of improvements to or the 
management and operation of TMSs. The report’s objectives are to:  

• Define predictive analytics. 

• Explain how predictive analytics may improve the management and operation of TMSs. 

• Explain how the use of prediction may improve the functionality, actions, and services of 
TMSs. 

• Identify options for implementing predictive analytics in the real-time management and 
operation of TMSs. 

• Identify issues to consider with regard to different potential paths that would integrate 
prediction into the real-time operation of TMSs. 

This report provides an overview of ways agencies might consider with regard to predictive 
analytics in the management and operation of TMSs and traffic management centers (TMCs) to 
aid in a range of decisionmaking. Prediction in the context of TMSs will be delivered through 
decision support tools (DSTs), which use knowledge, data, and methods through offline or online 
interactions. Offline interactions may be computer or noncomputer based. 

Knowledge-driven DSTs provide specialized problem-solving expertise based on the processing 
of stored facts, rules, procedures, and similar forms of knowledge. The tools attempt to emulate 
human reasoning but with more consistent results. Expert systems are the best known type. They 
use databases of knowledge generated by previous expert users and a system’s business rules to 
emulate the decisionmaking capabilities of an expert user of the system. Based on that 
knowledge, such tools suggest actions to traffic operators. Knowledge-driven tools are different 
from table-based tools (e.g., decision tables) in the way knowledge gets extracted, processed, and 
presented. The knowledge-driven DST attempts to emulate human reasoning, while the 
table-based tool responds to all events in a predefined manner. The following are the primary 
characteristics of knowledge‑driven DSTs:(1) 

• Provide recommendations based on human knowledge. 
• Apply a heuristic (i.e., practical or rule-of-thumb) technique for problem-solving. 
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Data-driven DSTs use data to aid in the decisionmaking process. They use data from databases 
that can be queried and that facilitate the processing and analysis of data to develop insights that 
support decisionmaking. Statistical analysis software is one of the most common types of DST. 
The effectiveness of a data-driven DST depends on the quality of the data gathered and the 
effectiveness of the decisionmaker’s analysis and interpretation. Ongoing advances in the ways 
data can be accessed, analyzed, and visualized enable agency staff who do not have technology 
backgrounds to work with analytical tools, analyze data, and make more informed decisions. The 
following are primary characteristics of data‑driven DSTs:(1) 

• Summarize data into usable information. 

• Use large amounts of data and have a well-organized way to query and visualize the 
results of the analysis conducted. 

• Offer flexible reporting and analytical capabilities. 

Model-driven DSTs use mathematical models and simulation tools that express the theoretical 
relationships between data elements or key variables of interest for the analysis being conducted. 
Such tools can be used online or offline to simulate the behavior of a transportation system or 
parts of a system by using different values for certain parameters. Model‑driven DSTs use 
different types of analysis tools (e.g., statistical software and traffic analysis software) to assess 
the available data, evaluate the data, and report on conditions. Traffic analysis tools that use data 
captured by a TMS could be used offline or online to assess how a transportation network would 
perform based on various potential actions. Model-driven DSTs can be used in real time as parts 
of a TMS to predict the possible outcomes of actions an agency’s TMS is considering 
implementing, thereby enabling the agency to assess impacts on key metrics like travel time, 
environment, and person and vehicle throughput. The following are primary characteristics of 
model-driven DSTs:(1) 

• Provide what-if analysis based on historical and assumed (e.g., scenario-based) data. 

• Apply algorithms, simulation, and optimization tools to provide decision support. 

• Use data and parameters provided by decisionmakers to help in the analysis of a situation 
but without the need for intense amounts of data input. 

Examples of those approaches and interactions are classified in table 1, modified from Federal 
Highway Administration (FHWA) report Decision Support Methods and Tools for Traffic 
Management Systems.(1) 



 

3 

Table 1. DSTs mapped to decision support classifications.(1) 

Approach 

Incident 
Response 

Plans 
Decision 

Trees 

Performance 
Measurement 

Tools 

Real-Time 
Traffic 

Analysis 
Tools 

Lookup 
Tables 

Knowledge driven Yes Yes No Yes Yes 
Data driven No Yes Yes Yes Yes 
Model driven No No Yes Yes No 

Examples of noncomputer-based, offline DSTs, illustrated in table 1, are incident response plans 
and paper-based decision trees that can be printed and collated into reference information. 
Offline tools generally support decisions associated with short-term and long-term activities. 
Performance measurement dashboards that summarize or report data are examples of 
computer-based offline DSTs. 

In contrast, online DSTs are real-time and computer based. Examples of computer-based online 
DSTs include a range of traffic analysis tools. With agencies’ greater and greater access to data 
and computational capabilities, current knowledge-driven and noncomputer-based DSTs such as 
incident response plans may indeed evolve to become informed by data- and model-driven 
information such as origin–destination analyses and transplanted to computer-based systems. As 
DSTs shift toward data- and model-driven computer-based tools, the importance of 
computer-based DSTs grows, along with their potential to both improve traffic operations 
personnel real-time decisionmaking and enhance TMSs’ operational capabilities. 

Computer-based DSTs have the potential to process vast amounts of data, replicate an agency’s 
operational processes, and support the decisionmaking of TMSs or operators at TMCs. DSTs can 
aid operations personnel with monitoring and assessing conditions (e.g., environment, facility, 
and network), detecting and verifying incidents, and identifying and evaluating appropriate 
response strategies for planned and unplanned events. DSTs also can help agencies achieve more 
consistent decisionmaking between staff involved in managing traffic, TMC operations staff, and 
TMSs. 

In the context of DSTs, embedding predictive analytics represents taking a model-driven 
approach through computer-based interactions. As is the case for the broad set of 
computer-based DSTs, predictive analytics has the potential to improve the real-time 
decisionmaking of traffic operations personnel and enhance the operational capabilities of TMSs. 

Ever-increasing access to traffic data—in both volume and variety (e.g., connected vehicle, 
unmanned aircraft systems, and lidar)—and the expanding operational strategies available to 
agencies are increasing the complexity of making operations-related decisions in realtime. Thus, 
an agency introducing any new DST at a TMC or in the broader transportation operations 
organization must consider whether the tool eases or adds to complexity and decisionmakers’ 
workload. 

As agencies plan for the next generation of their TMSs, planning typically includes consideration 
of possible enhancements to improve the performance and decisionmaking capabilities of the 
agencies’ TMSs. The potential use and incorporation of DSTs into TMSs are appropriate to 
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consider in the planning, design, and development of improvements to a TMS or in the 
preparation for a new TMS. TMS capability enhancements may include access, integration, and 
the use of new sources of data by adding or expanding data subsystems. New TMS capabilities 
may include the addition of new DSTs and physical components or subsystems. As agencies plan 
for the next generation of their TMSs, including the incorporation of predictive analytics, they 
must place at the center the need to improve the capabilities and performance of their TMSs so 
as to improve roadway operations, support agency efficiency, and meet broader organizational 
goals. 

This report benefits a range of practitioners involved in the planning, design, implementation, 
management, and operation of TMSs, including: 

• State departments of transportation (DOTs), local agencies, metropolitan planning 
organizations, regional authorities, toll authorities, and other organizations that manage 
or support TMSs. 

• Key public agency professionals, including TMS managers, performance management 
groups within DOTs, information technology (IT) departments, and data governance 
groups. 

• Contractors, consultants, and researchers. 

CONTEXT FOR PREDICTIVE ANALYTICS 

Predictive analytics are complex analyses of data through the use of mathematical models. 
Predictive analytics often encompasses advanced statistical techniques in the analysis of 
historical data to find usable patterns and trends. The found patterns and trends support the 
development of mathematical models that demonstrate sufficient statistical fit to generate 
predictions based on current data. Results from the application of predictive models using 
real-time data predict outcomes that help decisionmakers or even a TMS component take an 
action. Noteworthy in the evolution of predictive analytics are three factors: 

• The availability and accessibility of tools that support analyses and visualizations. 
• The availability of computational power to support real-time analyses. 
• The availability of data in volume, granularity, and quality that support analytics and in 

particular, the development of predictive models. 

A TMS is a system that comprises a complex, integrated blend of hardware, software, processes, 
and people performing a range of functions and actions. TMSs are complex operational systems 
that deploy and use technology—such as field equipment, advanced communications, IT, and 
software tools. TMSs collect and synthesize traffic data, integrate external systems, and facilitate 
the command and control of intelligent transportation system (ITS) field devices.(2) Further, 
TMSs are staffed with operators who actively manage and perform a range of functions and 
actions that facilitate improvements in the efficiency, safety, and predictability of travel in a 
surface transportation system.(2) 
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Predictive Analytics in the Context of TMS 

Effective traffic management requires both active traffic management, which provides dynamic 
and adaptive adjustments to changing current and future conditions, and management of the 
TMS, including data, software, hardware, processes, and staff.(3) Active traffic management 
involves a cyclical process and framework to manage the performance of the transportation 
network. The cyclical process and framework consist of: 

• Monitoring system performance. 
• Assessing and predicting system performance. 
• Proposing dynamic actions. 
• Selecting and implementing the selected actions. 

The levels of responsiveness in the active management framework context are: 

• Static—Responses to variations in conditions that are preset and updated based on the 
calendar. 

• Reactive—Responses that occur in regard to observed problems with the static plans 
requiring real-time monitoring. 

• Responsive—Responses to variations in conditions that occur in realtime after they are 
detected. 

• Proactive—Responses that get adjusted in anticipation of future conditions. 

Predictive analytics has the potential to help traffic operators and managers by bringing 
efficiencies to the active management cycle and advance responsiveness from static and reactive 
to responsive and proactive. The application of predictive analytics could assist in the real-time 
formulation of proactive changes to the management and operation of different strategies or 
control plans. In the past, most agencies implemented static operational strategies that reflect 
temporal variations (e.g., time of day, day of the week, or seasonal trend). 

Advancements in data quality and coverage along with advances in data management and 
processing practices have enabled agencies to move toward reactive, responsive, and proactive 
levels of operational strategy implementation.(3) For example, predictive analytics could estimate 
the length or duration of a traffic queue along a roadway associated with a crash, a 
work-zone-related lane closure, or adverse weather. Or the predictive model might be developed 
specifically for roadway crashes. That narrower, crash-specific prediction may support traffic 
incident management (TIM), traveler information, or queue-warning operational strategies and 
their related functions such as disseminating traveler information or providing coordination 
between agencies. Specific to a function will be such actions as sending data to another system, 
calling an incident response unit to set up advance warnings, or displaying public advisories on 
dynamic message signs (DMSs) regarding predicted queue length. The specific code or 
algorithm that predicts queue length or duration may reside as a stand-alone software with only a 
user interface (UI) that requires human operator inputs. Or the algorithm may be housed within 
the TMS software subsystem and include application programming interfaces (APIs) that interact 
with a data subsystem to directly ingest incident and roadway-specific data needed for prediction 
or a traveler information component such as a DMS. 
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A few agencies have developed, have implemented, and are using prediction tools to support 
TMC operations. When the tools are in use, they are generally stand-alone systems. TMC 
operators may be required to manually input information to generate the prediction, interpret the 
information, and take actions involving the use of different operational strategies, control plans, 
or sharing of information with other systems or service providers. 

Of note, a handful of vendors cite the use of predictive analytics in their product offerings. Many 
have since removed such terms as predictive analytics from their product features, finding the 
predictive capability unable to match the skills of an experienced operator. In the products 
reviewed, the methods used for predictive analytics are proprietary—meaning that no 
information is available on the data or methods used for developing the prediction model, on the 
fidelity of the predictions, or on the factors that may affect prediction fidelity. Such products are 
essentially black-box offerings, with no information on the analytical methods or data they use. 
A software product implemented in Pittsburgh, PA; Atlanta, GA; and Portland, ME, is an 
example. The product supported the coordinated operation and optimization of traffic signals by 
predicting traffic volumes in realtime to improve safety and traffic flow. The product used data 
collected from video detectors incorporated into an algorithm that adjusted signal-timing plans at 
intersections to foster coordination operation. Because the product is proprietary, information is 
not available on kinds of data are collected, what prediction is occurring, or how the prediction is 
being incorporated into the adjustments being made to the signal-timing plans at each 
intersection or being made to improve travel between traffic signals. 

Predictive Analytics Beyond the TMS 

The education, energy, healthcare, and retail industries are using predictive analytics for offline 
applications to improve different programs, services, and applications. For example, to mitigate 
higher than expected readmissions for specific clinical conditions and avoid Centers for 
Medicare & Medicaid Services penalties for high readmission rates, an enterprise applications 
provider conducted big-data analyses, developed and deployed predictive models, and created a 
UI to incorporate the model into clinical workflow. The provider based models on historical 
patient data and socioeconomic data to bring to the hospital staff’s attention those patients with 
high readmission risk. The staff’s use of the model reduced occurrences of patient readmission 
by 6,000, avoided $4 million in Medicare penalties, saved $72 million in medical costs, and 
improved resource use by focusing on high-risk patients.(4) 

Predictive analytics already benefits a variety of different types of online and offline 
transportation decisions. For example, transit agencies use algorithms to predict and share 
real-time bus and train departures and arrivals. While that function has traditionally used simple 
linear interpolation algorithms based on average time-of-day speeds, it now uses a blend of 
historical and real-time speeds along with precise bus location data to predict arrival times with 
high accuracy. With the prevalence of bus location data and the incorporation of predictive 
analytics into the real-time management and operation of a transit management system, the 
prediction of transit arrivals, departures, and travel times becomes possible. 

The services are typically incorporated into a proprietary software program or service that transit 
agencies procure or subscribe to for a fee. Similarly, predictive analytics has enabled freight and 
fleet operators to use virtual diagnostics and historical vehicle maintenance data to predict the 
likelihood of vehicle wear and tailored preventive maintenance decisions, resulting in longer 
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in-service times. Pavement management systems also use predictive models to prioritize and 
implement preventive maintenance strategies or treatments to extend the lifecycles of roadways. 
Common among the models are both the use of historical data to develop and test models and the 
application of those models with real-time information to formulate a prediction that supports an 
operations action. 

Evolving TMSs and Predictive Analytics 

The use of predictive analytics in TMSs is expected to incrementally evolve in complexity and in 
the ways the information might get used (e.g., offline traffic analysis and support) in TMSs. In 
the course of time, time-predictive analytics has the potential to support the active management 
and use of operational strategies, functions, actions, and services. Given the potential benefits of 
incorporating predictive analytics into the online, real-time operation of TMSs, value accrues in 
raising awareness of these potential future benefits with staff responsible for traffic management, 
TMSs, and transportation system management and operations (TSMO) programs. Important to 
understanding the potential benefits of implementing and using predictive analytics in the 
real-time management and operation of a TMS are the challenges and costs of developing, 
integrating, maintaining, and supporting the use of such tools. Integrating and using the tools in 
realtime require changes to the physical (e.g., subsystems and components) and logical 
(e.g., operational strategies such as ramp metering, functions such as detection of incidents, and 
actions such as confirming incidents) structure of a TMS. 

While predictive techniques continue to be developed, tested, and refined for TMSs, they have 
not yet become incorporated into the online or real-time management or operation of TMS 
services, functions, and actions. The current lack of TMS-integrated predictive analytics 
applications will remedy as agencies invest in updates to or replace components of their TMSs. 

Agencies have begun to include requirements for capabilities and structure in support of 
incorporating online prediction into the next generation of their TMSs. For example, as part of a 
broader transportation-monitoring program known as the Regional Multimodal Mobility 
Program in northern Virginia, the Virginia Department of Transportation (VDOT) is procuring a 
TMS with the ability to monitor traffic and other conditions so that the department can identify, 
verify, and predict changing conditions that may affect traffic in northern Virginia and the 
Fredericksburg metropolitan area. The intended advanced prediction capabilities will forecast 
travel conditions some minutes into the future and enable their TMC operators to proactively 
respond with a view to prevent or mitigate predicted issues. Information on a specific prediction 
and how it would function is not yet available.(5) 

The changes to the physical and logical elements of a TMS also will affect the subsystems, 
components, and day-to-day services (e.g., maintenance, repairs, monitoring, evaluation, and 
reporting) supported by a TMS and the supporting program (e.g., policies, procedures, and staff 
support). Implementing predictive analytics into a TMS (online or offline) may involve a review 
of the policies, procedures, and decisionmaking of the program supporting the TMS, specific 
processes conducted during the lifecycle of the system, or specific actions. 

Further, different human cognitive skills may be required to interpret the outputs of predictive 
analytics, particularly with regard to the strength of the model. For example, the model may be 
far stronger at predicting outcomes from certain incident types or geographic areas 
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(e.g., data-rich corridors) compared with others. Without information about and understanding of 
the strength of a prediction (e.g., the likelihood of the prediction’s certainty and precision), the 
decisionmaking may treat all predictions equally. And by doing so, an operator may take actions 
that perhaps would have benefited from further reflection. Human factors implications for TMS 
managers and operators also have to be considered to ensure that information gets delivered in a 
timely, informative, and actionable way—without overloading the operator. Lastly, the 
introduction of predictive analytics may markedly change TMS workflow, workload, and 
operator-versus-semiautomated decisionmaking. 

ORGANIZATION OF REPORT 

This report is organized into seven chapters that guide the reader through definitions and context, 
technical requirements, implementation considerations, use cases, and future directions as 
follows: 

• Chapter 1. Introduction. This chapter provides an overview of the purpose of the report, 
the audiences that would benefit from reading this report and introductory information on 
TMS and predictive analytics. 

• Chapter 2. How Prediction Can Improve Traffic Management System Operations. This 
chapter explains how predictive analytics could improve TMS actions and services as 
well as the deployment of operational strategies. 

• Chapter 3. Options for Implementing Predictive Analytics. This chapter presents options 
to consider regarding how predictive analytics might get integrated into the management 
and operation of TMSs. 

• Chapter 4. Predictive Analytics Considerations. This chapter presents the high-level 
requirements and issues to consider in an assessment of options for implementing 
predictive analytics within a TMS, taking into consideration current TMS capability, 
resources, funding, and data. 

• Chapter 5. Readiness Checklist. This chapter provides information on the range of issues 
to consider in support of assessing, selecting, obtaining, integrating, and using predictive 
analytics in the management and operation of TMSs. 

• Chapter 6. Case Studies: Using Predictive Analytics to Manage Traffic. This chapter 
describes how agencies have developed predictive analytics tools, the tools’ capabilities, 
the enhancements the tools provide, and the challenges associated with integrating the 
tools into the agencies’ TMSs. 

• Chapter 7. Trends, Issues to Consider, and Future Direction. This chapter previews trends 
and forthcoming advances that may support agencies’ ability to assess and use predictive 
analytics services. The chapter also summarizes knowledge gaps for the integration of 
predictive analytics within TMSs. 
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CHAPTER 2. HOW PREDICTION CAN IMPROVE TMS OPERATIONS 

This chapter transitions from the introduction provided in chapter 1 to predictive analytics in the 
context of TMSs’ current decisionmaking processes, tools, operational strategies, functions, 
actions, and services. The chapter first defines predictive analytics in the context of DSTs and 
operational strategies. Next, the chapter summarizes TMS structure—clarifying a TMS’ physical 
and logical elements—with specific focus on elements within data and software subsystems 
predictive analytics that may be incorporated. Data requirement details and further discussion are 
in chapters 4 and 5. Chapter 2 ends with an example of the Florida Department of 
Transportation’s (FDOT’s) integration of data into the department’s TMS data subsystem, the 
relationship of a software subsystem, and the potential of predictive analytics in a TMS. 

Central to the pursuit of all data analytics are, first, an understanding of the need—whether for a 
specific operational strategy, function, or action. Second is an understanding of how an existing 
function, action, or service currently supports that need and what data are already engaged. Third 
is an understanding of what new or modified function, action, or service might better support the 
need. After all that, agencies can begin to explore whether available data can be analyzed and 
how analytics might get embedded within the TMS to support the need and improve operations. 

PREDICTIVE ANALYTICS: DEFINITION AND CONTEXT 

Often, such terms as predictive analytics, machine learning, and artificial intelligence (AI) are 
used interchangeably, and even though they are related, they differ from one another. This 
section first defines and provides examples of predictive analytics in the context of the range of 
data analytics without delving too deeply into detailed methodologies or classes of techniques. 
The following section discusses predictive analytics and the relationships between commonly 
used terms such as machine learning and AI. 

Predictive Analytics in the Context of Data Analytics 

Broadly, data analytics is the science of examining datasets to identify patterns, provide answers 
to inquiries, and draw inferences. Data analytics makes use of specialized software, automated 
processes, and algorithms. The realm of data analytics can be organized into four ordered 
categories with advancing-capability maturity: descriptive, diagnostic, predictive, and 
prescriptive analytics (figure 1). Generally, that ordering reflects the need for proficiency in one 
before advancing to the next. Each category is highlighted in the figure, with examples related to 
traffic operations. 
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Source: FHWA. 

Figure 1. Illustration. Analytics maturity path illustrates four classes of analytics. 

Descriptive analytics, the type of analytics most frequently used in TMSs, involves the analysis 
of data collected by TMS components to describe real-time, current-state conditions, historical 
conditions (i.e., daily, weekly, monthly, quarterly, or yearly), and trends (i.e., temporal and 
spatial changes). Common descriptive analytical measures include counts (e.g., traffic volume, 
active incidents, customer complaints, and active snowplows), averages (e.g., segment speed and 
travel time), and deviations from average or percentages (e.g., delay, travel time reliability, and 
percentage of devices online). 

Descriptive analytics provides insights into the historical and current states of a transportation 
system. Descriptive analytics can support real-time decisionmaking when viewed by operators 
with expertise to interpret the data. For example, if the real-time traffic flow or average speed on 
a road segment declines, an operator may decide to access a closed-circuit television (CCTV) 
feed in the proximity of the road segment. Conversely, historical descriptive analytics provide 
insights into policies, processes, staffing, and management decisions. For example, operators 
may use percentage online data to prioritize sensor maintenance or may choose to modify safety 
service patrol routes based on the spatial and temporal frequencies of incidents. Such analytics 
are common with TMS data subsystems as well as with online and offline DSTs. Descriptive 
analytics supports various operational strategies, functions, and actions. 

Diagnostic analytics is the process of using data to determine the causes of trends and 
correlations between variables. Diagnostic analytics helps organizations better understand the 
internal and external factors that affect outcomes. From a transportation perspective, diagnostic 
analytics may explore integrated data to clarify whether a descriptive statistic suggests an 
anomaly rather than a natural variability in the data. The integration of data may inform how 
weather patterns or events, planned special events, holidays, shifts to telework, or workforce 
training or turnover affects operations. 
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Diagnostic analytics is frequently a component of a TMS data subsystem and informs policies, 
processes, staffing, and management decisions but also can be embedded in TMS subsystems to 
reduce TMS operator workload and the time required to monitor and assess transportation 
performance. For example, an advanced TMS could include subsystems with logic that makes 
prominent on a TMC monitor wall the CCTV feeds closest to road segments where diagnostic 
analytics identified an anomaly based on multiple criteria—such as when traffic volume and 
speed from a sensor deviate by a temporal threshold and event data from a free navigational 
application show reports of debris on the roadway. Note in that example that anomaly detection 
applies diagnostic analytics; however, the translation of that detected anomaly to the logical 
action to display a camera is not diagnostic analytics but, rather, a process rule. Similarly, TMS 
software that proposes a set of candidate DMSs and even message sets based on the operator’s 
entry of incident location and other data are not using diagnostic, predictive, or prescriptive 
analytics. Rather, the software is applying logic rules based on proximity and directional logic. 

Predictive analytics, the focus of this report, makes a significant leap beyond descriptive and 
diagnostic analytics by developing and applying mathematical models to make statements about 
the future state of a system. “Mathematical modeling” refers to the development process of 
creating a mathematical representation of a real-world scenario to make a prediction or provide 
insight. “Simulation” typically refers to application of the mathematical model. Predictive 
analytics can answer questions in realtime or for operations management, such as: 

• How long will the roadway be blocked for this crash? 
• Does this image show a vehicle traveling in the wrong direction? 
• How many or which devices may fail in the next 3 mo? 

Figure 1 shows that prescriptive analytics proposes what will happen, when, and even why. In 
contrast, diagnostic analytics identifies what happened and why. In developing and applying 
mathematical models to predict outcomes, operators may use traditional statistical methods such 
as regression or more advanced methods in the realm of machine learning and broader AI. The 
fidelity of the prediction depends on many factors, but at its core is a function of data quality 
(e.g., accuracy, completeness, reliability, relevance, and timeliness) and model quality 
(e.g., robust, precise, descriptively realistic, accurate, generalized, and useful). Traffic 
Management System Structure outlines the ways predictive analytics could support TMS 
management and operations. 

Prescriptive analytics goes one step further than predictive analytics by prescribing a real-time 
operational change, prescribing a change in processes, or even enacting the change through 
automation—with a human in the loop to interrupt the automation. Prescriptive systems may 
entail the simulation of multiple alternatives, refined to reach a proposed action. Autonomous 
vehicles use neural network models (a class of flexible nonlinear regression and discriminant 
models, data reduction models, and nonlinear dynamical systems) to make calculations in 
realtime that help a vehicle make a decision similar to one a human driver would make. In a 
TMS, prescription analytics could be applied to improve dynamic tolling that optimizes mainline 
and managed lanes. 
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Predictive Analytics in the Context of Commonly Used Terms 

This subsection places predictive analytics in the context of commonly used terms—often as 
buzzwords—to clarify that predictive analytics may be performed by using traditional and newer 
data; that it may use AI, machine learning, or deep learning; or that it may not. Figure 2 
illustrates the terms, and definitions and key takeaways follow. 

 
Source: FHWA. 

Figure 2. Illustration. Commonly used terms and relationships in setting the predictive 
analytics context. 

AI, a term coined by John McCarthy in 1955, which he defined as “the science and engineering 
of making intelligent machines.”(6) Today, “AI” generally refers to the branch of computer 
science involved with building smart machines capable of performing tasks that typically require 
human intelligence. AI includes a range of techniques such as machine learning and deep 
learning. 

Even though AI technologies have existed for several decades, the technologies’ increasing 
volumes, varieties, velocities, and veracities of data have enabled AI techniques and applications 
to transform industries. And while predictive analytics has existed for more than a century, its 
resurgence focuses on taking advantage of the new data and AI. 

Machine learning, a subset of AI, focuses on building methods that “learn” based on experience 
or data. Machine learning can use mathematical models such as regression, classification, 
clustering, and natural language processing. Machine-learning algorithms may include 
supervised learning, wherein a model learns to predict human-given labels; unsupervised 
learning, which does not require labels; and reinforcement learning, wherein the model does not 
require labels and autonomously strives to optimize. Again, data with greater volumes, varieties, 
velocities, and veracities are key to robust machine-learning models. Moreover, machine 
learning supports a range of analytics, including prediction. 
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Deep learning is a subset of machine-learning algorithms that use a brainlike logical structure of 
algorithms called artificial neural networks, which capture nonlinear patterns in data. Neural 
network models of the past had failed due to lack of data with sufficient volume, variety, 
velocity, and veracity, as well as due to lack of computing power. With the growth in the 
volume, variety, velocity, and veracity of data and the growth in cloud computing power, 
deep-learning techniques have been successful in the areas of vision (image classification), text, 
audio, and video. 

With regard to data growth, data are growing larger, being delivered faster, and becoming more 
complex (unstructured), which can make the data difficult—or impossible—to process in a 
timely manner by using traditional computational methods (e.g., a personal laptop). Examples of 
such data in transportation with respect to volume, velocity, and variety are archived, 
connected-car data, which can be a few terabytes per month; real-time data vehicle probe data 
with dynamic segmentation; and unprocessed lidar or video data such as CCTV or unmanned 
aircraft systems. Those data also can offer complexity through the lens of veracity. For example, 
event reports from a free navigational application have greatly varying accuracy based on 
number of vehicles on the roadway that are using the application, because the number of vehicles 
changes by time of day. Predictive analytics—when used with these newer, high-volume, 
variety, velocity, and veracity data—requires changes in the ways data are managed and changes 
in the tools that support modeling. Traditional predictive analytics (e.g., simple regression 
models) may be used for developing predictive models and applying the models to support 
functions and actions within a TMS. 

Predictive analytics, as noted in Predictive Analytics in the Context of Data Analytics, is one 
class of analytics. Predictive analytics is typically used in the field of data science, which begins 
with an understanding of business needs, collection of data, and the use of statistics, scientific 
computing, scientific methods, processes, algorithms, and systems to extract or extrapolate 
knowledge and insights from noisy, structured, and unstructured data. 

Figure 2 shows that data science does not require the use of AI, machine-learning, or 
deep-learning computational techniques. Likewise, the development and application of 
predictive models, or predictive analytics, does not necessitate AI, machine-learning, or 
deep-learning techniques and tools. Before exploring those computational techniques, agencies 
must establish confidence in and gain mastery of descriptive statistics. Too many examples of 
the application of those advanced computational techniques yield models that show great 
so-called fit but are flawed in their logic. For example, a machine-learning technique to 
differentiate dogs from wolves was found to be highly accurate in its prediction; however, 
researchers later found that the model was based on the presence or absence of snow in the 
image. Likewise, machine-learning application to differentiate cancerous versus noncancerous 
growth relied on the presence of a tape measure in the image. 

TMSs use mainly real-time and historical data and descriptive and diagnostic analytics to 
describe current conditions and to make decisions about operational strategies. Some TMSs 
provide simple decision support heuristics, but generally, the systems do not include models that 
learn or self-correct. Some TMSs are now using smart infrastructure such as commercial traffic 
signal control that may apply prescriptive and optimization that uses AI; however, the 
optimizations are through black-box capabilities, which offer limited to no visibility with regard 
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to the algorithms or methods applied. While predictive analytics is not currently used in most 
TMSs, it represents the next level of analytics that could help TMSs support safer, more efficient 
transportation operations. 

A key consideration in the maintenance of predictive analytics models is that they require regular 
monitoring, refining, and updating based on changes in the data. Predictive analytics models are 
not one-and-done exercises. Rather, predictive analytics models must be routinely reassessed and 
retuned as travel behaviors, event frequencies, and response strategies shift. Predictive models 
based on big data must be continuously monitored given that small changes in data can produce 
significant changes in predictive analytics model fidelity, which stands in contrast to traditional 
models such as linear regression based on a far smaller volume of data that do not change much 
even with minor shifts in data quality. 

TRAFFIC MANAGEMENT SYSTEM STRUCTURE  

This section summarizes the key terms, frameworks, and concepts outlined in a report, Review of 
Traffic Management Systems—Current Practice, by Kuciemba et al., which are relevant to 
understanding how and locating where predictive analytics may fit within the broader structures 
of a TMS, including technologies, tools, operational frameworks, and procedures.(3) 

More complex TMSs comprise multiple subsystems. Figure 3 diagrams a flowchart of a TMS 
with examples. The lines in figure 3 depict the structure’s relationship for both the physical 
elements and the logical elements of a TMS; the lines do not depict a flow of data or 
information. As noted in the preceding section, Context for Predictive Analytics, TMS structure 
is composed of physical elements and logical elements. The physical elements are the subsystem 
and components. The logical elements are the operational strategies, functions, actions, and 
services. 

The TMC is an important component of operating a TMS because it is typically the location 
where the TMS’s physical elements connect to one another, connect to communications and 
computing power, and typically house TMS operators. In figure 3, the TMC is illustrated at the 
right within the upper gray box, signifying that it spans both physical and logical elements. The 
following subsections delve into the physical and logical elements of a TMS. 

Physical Elements of a Traffic Management System: Subsystems and Components 

The physical elements in the TMS structure are shown on the left side of figure 3. The physical 
elements carry out a specific operational strategy (e.g., ramp metering subsystems) and can be 
organized as subsystems and components. 

The subsystems constitute a group of self-contained and interactive components that support one 
or more operational strategies. Examples of common subsystems that compose a TMS are ramp 
metering, traffic signal control, DMSs, and communications. Subsystems have become 
increasingly complex as technology and components have evolved. Other subsystems (e.g., data 
management subsystems and CCTV subsystems) are designed to support and interact with 
multiple subsystems and operational strategies (e.g., TIM and traveler information). 
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Source: FHWA. 
RWIS = Road Weather Information System. 

Figure 3. Diagram. Traffic management system with examples.(3) 

Components include devices or hardware elements that serve purposes as parts of a larger 
subsystem or TMS. As these technologies and components have evolved, so too have the 
operation, management, and maintenance of the systems. 

Components from the subsystems can range from changeable message signs, detection 
components, CCTV cameras, signal heads, controllers, and communication switches to other 
computer technologies. The components may work either in isolation from one another or 
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together with components serving other subsystems to perform functions that achieve the overall 
objectives of the system. 

The selection of ITS components and technologies is guided by the concepts of operations, use 
cases, and operational strategies the TMS may implement; the subsystems and how the 
components are linked (e.g., via APIs) to the subsystems; and how all of them work together to 
meet overall TMS and agency goals, objectives, and performance measures. Agencies can better 
understand the capabilities of their subsystems and components by performing a systematic 
analysis of how each operates or how each is intended to perform. 

Logical Elements of a Traffic Management System: Operations Strategies, Functions, 
Actions, and Services 

Operational strategies are sets of functions and combinations of actions that achieve 
transportation agency objectives for safety, mobility, and reliability. Examples of operational 
strategies, such as active traffic management and road weather management, enhance the safety, 
reliability, and performance of an existing roadway by more quickly restoring losses in roadway 
capacity and controlling demand for the roadway. 

The implementation of operational strategies necessitates specific actions, functions, and 
services. An action is a basic, singular task completed by a system component or a person. 
A function is a series of actions or a combination of actions that support an operational 
strategy. A service is a set of functions and/or actions that support system operations. 

The logical elements of a TMS (as shown in figure 3) include the following defining 
characteristics: 

• Active management: Composed of static, reactive, responsive, and proactive response 
strategies. 

• Operational goals, performance measures, and reporting: Articulated clearly, well 
defined, and core to a successful TMS, as well as assessing a TMS’s performance. 
Agencies must define system performance to achieve goals and collect data to monitor 
the performance of those goals. 

• Operating environment: Describes the types of facilities the TMS is monitoring and 
managing. The facilities may include freeways, surface streets, and travel on multiple 
facilities or corridors. Monitoring and managing environments may be different from 
each other. For example, a TMS will monitor facilities whose queuing or incidents 
frequently affect the facilities the TMS manages. 

• Operational strategies that the system implements: Includes the functions, actions, and 
services that support the operational strategies. The right side of figure 3 lists examples. 

• Operational deployment model: Describes the type of operational implementation model 
for a TMS, including centralized, distributed, virtual, hybrid, and temporary. 

• Geographic coverage of the TMS: Describes the area that a TMS serves. 
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Physical Subsystem and Predictive Analytics 

As outlined in the report Decision Support Methods and Tools for Traffic Management Systems, 
“there are generally certain procedures that must be followed for an operator or analyst to 
integrate and use a DST. The DST (and/or its software) may need to be integrated with a 
software subsystem, data subsystem, computing hardware, and DST-generated data users (sic) or 
decisions.”(1) Software, hardware, and data subsystems are key to supporting the required 
operational strategies, functions, actions, and other activities of TMSs. Those three subsystems 
work in concert to support essentially every operational strategy of a TMS. This section first 
summarizes the subsystems within the TMS structure by drawing from Kuciemba et al. and 
identifies how predictive analytics model development and application relate to the TMS 
subsystems.(3) 

Depending on the predictive analytics use case or how it will support an operational strategy, 
function, or action, the predictive analytics will affect other subsystems such as ramp metering, 
traffic signal control, and traveler information, which are explored in a later section of this 
chapter titled How Predictive Analytics Could Support Traffic Management System 
Management and Operations. 

Data Subsystem 

The data subsystem provides data processing and storage for the TMS and supports access to the 
data by other subsystems and external users. Data subsystems support specific functions and 
actions such as transmitting, processing, analyzing, interpreting, reporting, and archiving data. 
The data subsystem uses APIs to interface with other subsystems or components such as 
infrastructure-based devices (e.g., inductive loop, laser, radar, video detectors, and 
wireless-technology systems) and, increasingly, roadside infrastructure-free sources to access 
data for use in TMSs. Data subsystem functionalities may include timely retrieval of data from 
sources—from real-time to manual; maintenance of a data catalog; data transformations for 
storage and retrieval for use; securing data; managing users and access; encrypting data 
communications; maintaining data availability; and delivering diagnostic and status information. 

The data subsystem typically includes components that extract, transform, and load (ETL) data 
as well as a data dissemination component. Central to the data subsystem is the data warehouse 
component that maintains subcomponents such as a data catalog, analytics, reports, and data 
store. The data store may include structured and unstructured data. 

As technology has advanced (e.g., fiber optics, wireless, Internet of Things, mobile data, and 
cloud-computing-based management solutions), opportunities abound for transportation 
operators to use data sources (e.g., vehicle probe, connected-car, or free navigational app-based 
data) that complement or potentially supplant roadside devices. The advances offer the potential 
to provide information to supplement the information TMSs use in considering locations where 
data may not be collected currently. With more data, previously unmet decision support needs 
may become tenable through the introduction of needs-driven analysis tools and techniques that 
use newer data sources. With more and more data integrated into the TMS data subsystem, 
proactive use of new operational strategies also may be possible. 
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TMS data storage and processing have traditionally used dedicated, on-premises equipment. In 
recent years, a TMS’s data subsystem may consist of different sources of data that get stored, 
processed, and analyzed in different locations. Data may be stored locally on a server at the 
TMC, via a server at another Government facility, or remotely via a cloud-computing-based 
database leased from a private vendor. Thus, access to the data may be via the Internet. The shift 
to using a combination of servers and databases leased on a cloud means data subsystems are 
becoming increasingly virtualized and more accessible from any place with an Internet 
connection. 

One example of a data subsystem that includes the use of a leased database on a cloud is the 
Kentucky Transportation Cabinet.(7) The data subsystem for the cabinet’s TMS transitioned to a 
cloud-computing database beginning in 2021. Previously, data were stored on an on-premises 
server supported by the IT department. 

Another example is VDOT’s TMS data subsystem, which integrates the archiving and sharing of 
data into five of its TMCs.(3) VDOT has created a data subsystem portal called SmarterRoads, 
which shares a range of different types of data sets, including incidents, work zones, road 
conditions, and road signs.(8) Users can access the portal via the Internet. 

The analysis of data for exploring trends—and the use of those trends to develop prediction 
models—may require the collation of data from the multiple data storage locations. Once the 
predictive model has been developed, an agency may embed it within an analytics subsystem of 
a data warehouse. The predictive model also may place different requirements on components of 
the data subsystem; for example, it may require access to data sources more quickly and place 
different requirements on the ETL component APIs. 

Software Subsystem 

The software subsystem includes programs that support a TMS’s functions and services. 
Examples of software subsystems are the rules engine, database software, and analytics-related 
subsystems (e.g., algorithms and simulation). Software products may be unique to a DST or 
relevant to the broader TMS. Broader TMS software may include ETL tools, operating systems, 
database software, security software, and UI software. DST-specific software may include rules 
engines, algorithms, simulation, and other analytics software that may be maintained either 
on-premises or by using leased cloud-computing services. 

Once predictive models have been calibrated and transformed into algorithms or simulations, 
they may be incorporated as a DST software subsystem. The software will likely have to interact 
with the TMS UI and database software or may require its own UI. Again, depending on the 
model’s real-time data and speed needs and algorithm platforms, a TMS may have to explore 
different software as well as software that may be hosted on in-house servers or a cloud. 

Computing Hardware Subsystem 

A DST and its accompanying software program may be parts of a field device, a traffic 
controller, or a broader TMS or TMC. The computing hardware may be owned and managed by 
a vendor, may be owned by an agency but managed by a vendor, or owned and managed by 
TMS operators. Within the transportation agency, the hardware is shared to reduce overall costs. 
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The performance requirements of the computing hardware relate directly to the functionality of 
the TMS, the processing power needed, and the amount of data involved. Real-time DSTs may 
introduce a greater need for data and processing power. 

The earlier, Kentucky Transportation Cabinet example and the migration of the cabinet’s data 
subsystem to a cloud vendor accompanied a migration of software and computing hardware to a 
cloud. The cost and capabilities of in-house data subsystem software and hardware could not 
keep pace with cloud-computing offerings—especially because the agency began accessing 
larger volumes and varieties of data, all of them having geographic information components. 

Planning for Potential Changes to a Traffic Management System 

Predictive analytics algorithms, simulations, and DSTs may require minimal, moderate, or 
substantial changes to a TMS’s physical and logical components at the subsystem, component, 
cabinet, or device level. A TMS typically has certain established processes and steps associated 
with the planning, developing, and implementing of the overall TMS as well as TMS subsystems 
and components that support new or better operational strategies, functions, actions, and 
services. Processes may involve the development of a concept of operations, cost estimates, 
system requirements, and other planning efforts for larger-scale changes. The scope and 
magnitude of change dictate the level of planning for the inclusion of predictive analytics in 
support of TMS operational strategies, functions, or actions. Chapter 4 presents more 
considerations. 

HOW PREDICTIVE ANALYTICS COULD SUPPORT TRAFFIC MANAGEMENT 
SYSTEM MANAGEMENT AND OPERATIONS 

Decisionmaking bridges a TMS’s physical and logical elements and is a critical component of 
active management. Operational decisionmaking is more closely associated with the logical 
elements of a TMS structure but also relies on the subsystems and components in the physical 
system to collect and analyze the data that support decisionmaking. Further, decisionmaking 
includes the human operator in management of the physical and logical elements of a TMS 
system, which requires strong knowledge of the transportation system, clear understanding of an 
organization’s operational procedures and their real-time application, and the processing and 
assimilation of a wide range of data and information.(2) 

Figure 4’s multicolor circle represents the decisionmaking framework associated with traffic 
management. 
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Source: FHWA. 

Figure 4. Diagram. Traffic management decisionmaking cycle.(2) 

The framework consists of four decision stages and functions presented within the center circular 
cycle:(2) 

• Monitor: Collect and process data from various field devices, third-party data sources, 
and collaborators to evaluate current conditions in the transportation network. The 
monitor function may include subfunctions such as transportation network data, travel 
patterns, device status, weather and roadway conditions, and events. 

• Calculate and predict: Apply advanced data processing and analytics that combine 
real-time data with historical data to predict the future state of the transportation network. 
This phase also involves detecting and predicting the risk of events that could adversely 
affect traffic performance and warrant an operational response. Subfunctions herein may 
include weather forecasts, events, traffic conditions, and prediction functions. 

• Propose: Generate one or more response plans, actions, functions, and operational 
strategies to mitigate the effects of traffic events based on the calculate-and-predict 
function. Subfunctions are maintenance activities, operational response, and traveler 
information. 

• Select and implement: Select and execute the response plan deemed most likely to 
effectively improve performance. 

The levels of analytics introduced in Predictive Analytics: Definition and Context, which are 
descriptive, diagnostic, predictive, and prescriptive, loosely map to the four decision stages of 
the traffic management decisionmaking framework, as illustrated in figure 4. Descriptive 
analytics reflects the monitoring stage of the decisionmaking cycle. Diagnostic and predictive 
analytics reflects the calculate-and-predict stage. Predictive and prescriptive analytics can 
support the propose-and-select stage of decisionmaking. 

Prediction is a capability that supports operational strategies, control plans, functions, actions, or 
services. Often, the prediction is embedded within a DST to support the propose, select, and 
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implement elements of decisionmaking. The DST can be noncomputer based or computer based, 
as well as online or offline.(2) DSTs that use predictive analytics have to be computer based but 
can be used online or offline as follows: 

• Offline decision tools benefit from predictive analytics: Predictive analytics models are 
usually developed and used for creating offline DSTs that introduce operators to choices 
that extend beyond the operators’ current practices, knowledge, experience, and intuition. 
If the model or analytics is based on incomplete data or if the operating paradigm shifts, 
the tool’s prediction may not be part of an operator’s knowledge of the system. The 
predictive model may need recalibration with some frequency, and such model updates 
typically are parts of tool updates. The models have to align with and be implementable 
in adherence to an agency’s policy and management guidelines as well as operators’ 
expert judgment. 

• Predictive models also can improve decision trees—which human operators use for 
completing structured processes through a series of simple questions and limited 
answers—to reach decisions consistent with their organizations’ accepted policies and 
procedures. Operators could use predictive analytics to adjust the questions and 
thresholds within a decision tree and thereby improve outcomes and simplify operator 
workload. 

• Online decision tools benefit from predictive analytics: Predictive and prescriptive 
analytics has the potential to simplify and even automate decisionmaking related to traffic 
management by applying integrated data to traffic conditions, weather, and transit system 
performance. For example, traffic camera software that uses AI and deep learning might 
detect incidents and alert TMC operators. 

Predictive analytics could support some of the most common operational strategies in a TMS—
through every phase of the traffic incident timeline (detect, verify, respond, and return to normal 
traffic flow) and in coordination with TSMO strategies such as part-time shoulder use, ramp 
metering, variable speed limits (VSLs), traveler information, and road weather management. The 
following subsections give examples of the strategies’ use. 

TIM 

TIM is a central operational strategy in most TMSs, because the efficient management of 
incidents is closely related to the management of travel. The ability to predict the likelihood, 
frequency, severity, location, duration, and network impact of a roadway crash is a focus area of 
prediction-analytics-related research. Such efforts are typically based on States’ crash data and 
sometimes integrated into vehicle probe speed data, traffic volume data, weather data, and 
roadway geometry data. 

Prediction as noted in How Predictive Analytics Could Support Traffic Management System 
Management and Operations would support such subfunctions as maintenance activities and 
operational response within the propose, select, and implement functions of the decisionmaking 
framework. However, an important consideration is that real-time predictive analytics for TIM is 
generally at the research or proof-of-concept stage and not at the stage for routine use. 
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Nonetheless, outlining the key considerations for building capability maturity for integrating 
predictive analytics into TIM is a critical step toward the routine use of predictive analytics in 
TMSs. 

The TIM process consists of five phases: incident detection, verification, response, clearance, 
and recovery.(9) Descriptive and diagnostic analytics can accelerate detection and verification 
functions and actions. Predictive analytics embedded within online DSTs may support clearance 
and recovery functions and actions. Predictive analytics that proposes high-risk road segments 
based on demand, road weather, and other factors also may support offline decisions associated 
with safety service patrol positioning. 

Device vendors have harnessed the power of predictive analytics to offer camera systems with 
video analytics that can detect and verify slowdowns, roadway crashes, and wrong-way vehicle 
movements. Data from those components can channel to multiple subsystems (e.g., data 
subsystem and software subsystem). The data can be shared with the UI subsystem to offer 
visual alerts through a graphical UI that enhances the alert function for operators. The data 
reduce workloads and improve the timeliness of the monitor, and, potentially, calculate and 
propose components of the decisionmaking process. 

In the context of predictive analytics and the ability to estimate in realtime networkwide impact, 
severity, and duration, few models have yet to provide predictions that match expert judgment. 
Likewise, the application of predictive analytics to estimate the frequency and locations of 
crashes based on demand and weather conditions also is in the research and testing phase. 

Research efforts such as by Zhan et al. show that an M5P tree algorithm achieves better 
prediction results than traditional regression and decision tree models.(9) Specifically, the 
researchers demonstrated that lane blockage is the main cause of congestion during freeway 
incidents and that for incidents involving lane blockages, prediction of lane clearance time 
instead of incident clearance time is more beneficial. The model showed that several variables 
affected lane clearance time, including number of lanes blocked, time of day, types and number 
of vehicles involved, response by Florida’s Severe Incident Response Vehicle Team, and TMC 
response and verification times. 

Part-Time Shoulder Use 

Part-time shoulder use is a congestion relief operational strategy—mainly for freeways—that 
converts shoulders to travel lanes during certain hours of the day. Some major arterial roadways 
also permit part-time shoulder use, often for buses only. Opening a shoulder may include a 
policy that dispatches a vehicle to confirm the lane is clear of any debris or stopped vehicles. 
Agencies that permit part-time shoulder use typically do so as a static strategy based on fixed 
time-of-day and day-of-week schedules for peak periods defined through descriptive analytics. 
For example, Colorado DOT based the days on which to open shoulders on historical data and 
trends in preceding years.(10) 

The deployment of dynamic part-time shoulder use as an operational strategy is expanding, with 
facilities on I–35W in Minneapolis, I–66 in Virginia, I–70 in Colorado, and I–670 in Ohio.(11) 
The strategy opens shoulders when certain congestion thresholds are reached. Recently, Ohio 
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DOT implemented the strategy in the SmartLane project, featuring a 9-mi stretch on I–670 
between downtown Columbus and John Glenn Columbus International Airport. The project 
involved converting the eastbound shoulder into a lane for drivers during peak hours. In some 
cases, lane and shoulder control also may include operator judgment. 

Predictive analytics delivered through camera systems with video analytics may expedite the 
enactment of dynamic part-time shoulder use, supplanting protocols that require a vehicle to 
verify the lane is clear. Predictive analytics that uses deep-learning models based on real-time 
cameras, traditional detector-based volume data, and crowdsourced data from vehicle probes or 
connected-car providers could transform the practice from static or dynamic. As models 
improve, they may predict earlier and with greater confidence when a part-time shoulder use 
strategy should be enacted and for what duration to prevent congestion and queuing. The 
predictive model or algorithm could reside within the software subsystem and would require 
APIs to access data from the data subsystem. The predictive model may transmit information 
through a UI software subsystem to an operator’s UI as an alert or through a map-based system. 
The operator may then use the alert to access the CCTV cameras related to the corridor to ensure 
the lane is free of blockages or other actions or functions so as to support the decision to initiate 
or end the part-time shoulder use operational strategy. 

Ramp Metering 

Ramp metering is an operational strategy that measures, analyzes, and monitors the volume of 
traffic on freeway entrance ramps and adjacent main lanes and subsequently controls the flow of 
traffic on ramps onto the freeway in an attempt to keep traffic flowing smoothly.(3) Ramp 
metering can be pretimed or traffic responsive with local or systemwide operations.(12) 

Ramp metering could benefit from algorithmic advances in real-time, dynamic operations, but 
the predictive potential would require improved lane-specific volume and speed data. Still, even 
though traffic-responsive algorithms have applied machine-learning techniques in simulated test 
platforms, the levels of programming complexity, certain challenging training procedures, and 
demanding data requirements have precluded such algorithms’ real-world application.(13) While 
no real-world application of advanced predictive techniques in ramp metering exists, improved 
heuristic-based metering processes based on descriptive analytics do exist. As an example, the 
Washington State Department of Transportation (WSDOT) uses real-time descriptive analytics 
for adaptive ramp metering, implementing a fuzzy logic ramp metering algorithm on 126 ramps 
in the Greater Seattle area in 1999. The algorithm was compared with a local and a 
bottleneck-based algorithm at two different study sites. The research team found that the fuzzy 
logic algorithm metered traffic more restrictively than the two others when preventing a mainline 
bottleneck, secondary queue formation, or an excessive queue. The research team also reported 
improvements in systemwide travel time and throughput using the fuzzy logic algorithm.(14) The 
WSDOT fuzzy logic ramp metering algorithms as well as others embedded in commercial 
products reflect real-time applications using descriptive analytics for adaptive ramp metering in 
the routine practice stage. 
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Variable Speed Limit 

The VSL operational strategy collects traffic, weather, construction, and maintenance 
information and provides traveler information in the form of recommended safe speeds.(3) In 
urban areas, speed information is typically part of a larger traffic management strategy, while in 
rural areas, speed information is typically part of a weather management strategy. VSL promotes 
safe and efficient travel on urban freeways by gradually decreasing advisory or regulatory speeds 
during adverse conditions such as poor visibility, wet or icy pavement conditions, and traffic 
queuing. Currently, VSL is driven mainly by heuristics or manual decisionmaking related to 
weather, incidents, and congestion; however, VSL has the potential for enhancements with more 
granular, real-time data as well as historical data analytics to support event-responsive speed 
variations. 

While the VSL strategy is currently and primarily rule based, promising preliminary research has 
demonstrated that predictive analytics may improve safety.(15,16) For example, one study applied 
a simulation model in Auckland, New Zealand, against a well-known VSL algorithm.(17) The 
simulation results showed that the proposed algorithm outperformed the existing one, improved 
the motorway system’s efficiency performance, increased critical bottleneck capacity by 
6.42 percent, and reduced total travel time by 12.39 percent compared with a no-control scenario. 

Those research efforts suggest models based on efficiency optimization goals and that VSL 
strategies need extensive development through the customization of models for local conditions 
(e.g., roadway geometry). And, like ramp metering, VSL requires a large volume of data from 
vehicles to improve prediction accuracy. 

A VSL-focused predictive model would require an API to the data subsystem, would likely 
reside in a software subsystem (e.g., algorithm engine or machine-learning engine), and would 
provide an API for a UI to view prediction. If the predictive model included a simulation engine, 
it may predict, for example, likely resultant traffic flow and overall delay associated with a range 
of potential temporal and spatial adjustments to the speed limit at the half hour or hourly forecast 
timeframes. The operator may then review predictions and choose whether to take specific 
actions such as accessing an existing VSL UI to implement a change. As confidence in the 
predictive model increases, the UI may get supplanted with an automated software subsystem 
that interfaces directly with the DMS and VSL subsystems. 

EXAMPLE: FLORIDA DEPARTMENT OF TRANSPORTATION TRAFFIC 
MANAGEMENT SYSTEM 

This section summarizes FDOT integration of data sources into the TMS software subsystem to 
enable future predictive analytics. In a TMS, the software subsystem includes programs that 
support the functions and services of the entire TMS and specific software programs installed for 
other subsystems that support decisionmaking.(2) Figure 5 illustrates a hypothetical software 
subsystem for a TMS. The boxes cited as algorithm engine, simulation engine, and machine 
learning, with arrows coming from the software, may likely include arrows between the three 
engines. 
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Source: FHWA. 

Figure 5. Diagram. Hypothetical software subsystem and installed software in a TMS.(2) 

The TMS software subsystem uses APIs to integrate data used by multiple software programs 
installed on this subsystem or to share data with other subsystems.(2) An API is a description of 
the routines, protocols, and tools for interfacing and exchanging data with a software application 
or program. Two types of APIs are typically developed and integrated into the software system 
as follows: 

• Data providers, which provide data for the TMS: The provider usually dictates its interfaces 
and the processes, protocols, and requirements (e.g., formats) for receiving and using data 
from its system. The provider furnishes the associated API documentation (e.g., data 
dictionary, release notes, configuration guide, and user guide) to follow to access the data. 

• Data subscribers, which receive data from the TMS: The TMS dictates the data interfaces, 
and subscribers develop their interfaces to meet the requirements specified for the 
appropriate processes, protocols, and formats. The TMS should provide the subscriber with 
an associated schema or data definition. 

FDOT’s SunGuide® software system enables regional Florida TMCs to integrate numerous 
hardware, software, and network applications as well as exchange data with other TMCs.(18) 
SunGuide’s standardization of common TMC functions makes the various FDOT 
district facilities more interoperable. Operators can use the software to perform incident 
management tasks, obtain data from vehicle detection systems, display videos from roadside 
cameras, and use the Florida 511 advanced traveler information system to alert motorists via 
messages on DMSs, highway advisory radio, web-based content, and other communications 
channels. 

FDOT established processes that integrate a subset of data obtained from a free collaboration 
with a navigational application into the data subsystems of its TMS. In this case, SunGuide’s 
integration of the data represents a data provider API. The SunGuide advanced traffic 
management system (ATMS) software, used by 14 agencies in 16 TMCs in Florida, ingests the 
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processed navigational app event data provided via an API and enables operators to create 
ATMS events without manual data entry.(18) 

The navigational app event data are first stored centrally in realtime—outside ATMS. The data 
also are filtered in realtime to exclude all event types except “accident” and “hazard on road” and 
translated using FDOT’s geographic information system shapefile (linear referencing system) to 
determine the State road and county of each event. Then the software subsystem distributes to 
each FDOT district the subsets of incident and hazard on road data relevant to each FDOT 
district. Each district can apply additional filters before an incident from this data source appears 
on the TMC operator map as a flashing icon. After incident verification, the operator can push 
the report as an ATMS event with typical traveler information and scene deployment response as 
required. 

Figure 6 illustrates the SunGuide ATMS architecture, which shows the multiple operational 
strategies, subsystems, and components that interface by using the data bus. FDOT ingestion of 
the free navigational application data comes through the Florida 511 system (upper right). The 
incident detection operational strategy uses data from that source along with eight different data 
systems (below data bus, right of center). Others in this group include, for example, the agency’s 
wrong-way-driving-detection subsystems, Road Weather Information System alarms, and 
Florida Highway Patrol computer-aided dispatch. 



 

27 

 
© 2019 FDOT. 
*= Modified 
Admin = administration; Amer. = American; AVI and LPR = automatic vehicle identification and license plate recognition; AVL = automatic vehicle location; 
Config = configuration; C2C = customer to customer; CV Driver = connected-vehicle driver; DSRC = dedicated short-range communication; FHP CAD = 
Florida Highway Patrol computer-aided dispatch; FTE = fault-tolerant Ethernet; Ga to Access = global assembly to access; GPIO = general-purpose input/output; 
HAR = highway advisory radio; IP = Internet Protocol; Maint. = maintenance; MCP = manual control panel; MVDS: EIS RTMS = microwave vehicle detection 
station: electronic integrated system remote traffic microwave sensor; N az to c = Naztec driver–traffic signal communication; NTCIP = National Transportation 
Communications for Intelligent Transportation Systems Protocol; PLCs = programmable logic controllers; RISC = rapid incident scene clearance; RRNA XML 
= Road Range service synchronizes information Extensible Markup Language; SAA = system administration application; SELS = Statewide Express Lane 
Software; SPARR = Smartphone Application for Road Rangers; TMDDv3 = Traffic Management Data Dictionary version 3; TSS = traffic signal system;  
Var = variable. 

Figure 6. Diagram. SunGuide ATMS architecture.(18) 
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The FDOT Wrong-Way Driving system for limited access roadways uses a camera system with 
predictive analytics on the edge, which means the algorithms within the local camera system 
predict a vehicle’s countertraffic movement. The prediction triggers heuristics that flash a 
wrong-way sign that the errant road user may view. The prediction also triggers many other 
actions as illustrated in figure 7.(19) The FDOT architecture and its data and software subsystems 
could support future predictive analytics applications such as truck-parking overflow or queue 
duration predictions and implement prediction models to improve the active management of their 
transportation system. 

 
© 2022 FDOT. 

Figure 7. Illustration. FDOT Wrong-Way Driving alert system.(19) 

FDOT collaborated with the University of Florida to develop video-processing and 
machine-learning methods to automatically detect and classify trucks traveling on Florida 
highways. High-resolution FDOT videos at two freeway locations served as the training and 
evaluation data developed deep-learning algorithms for detecting the location of a truck in a 
video frame and developed a hybrid truck classification approach that integrates deep-learning 
models and geometric truck features for classifying trucks into one of the nine FHWA classes 
5–13. Researchers developed additional models to recognize and classify truck attributes. 
Prediction accuracy for truck classification was higher than 90 percent.(20) The agency also has 
explored other prediction capabilities, but none are yet integrated into the TMS. 

IMPLICATIONS FOR IMPLEMENTING PREDICTIVE ANALYTICS 

The implications of integrating predictive analytics—along with the data and technologies 
needed to support them—are that the TMS elements and the data subsystem will have to be 
modernized to incorporate the integration of data and analytical models in support of predictive 
analytics. That modernization becomes more important as technology continues to advance at a 
rapid pace, which creates opportunities for agencies to further modernize field equipment; 
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leverage crowdsourced, mobile, and connected data; and modernize data management practices 
to integrate and analyze these large-volume and high-velocity data. 

Currently, TMS decisionmaking is supported primarily by descriptive and diagnostic analytics. 
While the operator and manager will continue engagement in the interpretation of analytics to 
improve decisionmaking, involving predictive and prescriptive analytics will mark a significant 
change in current operating procedures and active traffic and demand management processes. 
Agencies should recognize that predictive analytics will reside in the physical side of a TMS, 
within components, and as a part of subsystems, as well as in the logical side of a TMS to 
support operational strategies and functions. To be effective, predictive analytics has to become 
accepted by and integrated within TMS operators’ and managers’ decisionmaking. 
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CHAPTER 3. OPTIONS FOR IMPLEMENTING PREDICTIVE ANALYTICS 

In chapter 2, predictive analytics was defined within the broader context of analytics and then 
introduced from the perspective of support of TMS operational strategies, functions, actions, and 
services. 

Operationalizing the predictive model may involve making a stand-alone DST or embedding the 
predictive model or algorithm into physical subsystems and logical functions, actions, or services 
within the TMS. This chapter focuses on where predictive model development and use may 
reside in TMSs either at the subsystem, at the component, or as a stand-alone capability. The 
chapter then explains how analytics may be implemented from the perspective of local or 
vendor-managed servers, operating systems, and software. 

The information presented in this chapter discusses predictive analytics from a technical 
deployment perspective. Organizations must recognize that before any deployment 
decisionmaking, they must first define the need and then adhere to standard processes when 
considering the introduction or adjustment of any technology, tool, or capability within either the 
physical or logical components of a TMS. Report Decision Support Methods and Tools for 
Traffic Management Systems delves in significant depth into considerations associated with the 
selection and use of DSTs(1)—also introduced in chapter 5 of this report. 

WHERE WILL THE PREDICTIVE ANALYTICS RESIDE? 

Predictive Analytics Development and Use Within Traffic Management System Data and 
Software Subsystems 

Analytics has traditionally been implemented within a data and software subsystem of a TMS or 
within the data system managed by the broader operations enterprise. That implementation 
reflects the inherent need to store a large amount of historical data and rapidly process them to 
develop, optimize, and run predictive models. In this approach, data are collected by field 
components such as detectors and sensors or by using third-party external services through an 
API and transfer to the data subsystem by using wired or wireless networks. The various data are 
stored for a predetermined amount of time in on-premises or cloud storage—often called a data 
warehouse. The warehouse stores structured and unstructured data and may include a data 
dissemination component. Analysts access the data to train and test multiple predictive models 
until one of the models meets an acceptable level of precision. The successful predictive model is 
then deployed to a software subsystem (e.g., an algorithm or simulation engine), where it is 
monitored for accuracy and eventually replaced by a new, more suited model that has been 
trained on more recent data. That approach to predictive analytics is referred to as core-level, 
centralized implementation. 

• Core-level implementation may be performed by a consultant or university collaborator 
working with a State or local traffic management agency. While this approach to 
predictive analytics has been the norm for years, it is not without drawbacks. One 
drawback is that as soon as the fundamentals used for training the predictive model 
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change, the model will not prove useful. Core-level implementation also involves 
significant costs attributable to the following features: 

• Storage of a large amount of historical data to train the predictive models: These data 
may now include probe vehicles; navigational application-based, connected roadside 
equipment; an unmanned aircraft system; and connected-car, micromobility, and other 
newer data. 

• High network bandwidth as required between the data collection device and the data 
center to ensure the efficient transfer of a large amount of data to the data center. 

• The need for predictive models’ rapid detection of changes. 

• Implementation of security measures designed to hide and alter personally identifiable 
information such as drivers’ photos and license plates, which are present in the collected 
data so that the data can be used in predictive analysis without risks. 

• The emergence of data-hungry, deep-learning prediction algorithms. 

The migration of on-premises data centers to cloud-computing-based data centers has led to 
reductions in costs, but the rapid increase in data volume and complexity challenges 
cloud-computing implementation. Thus, developers and researchers have been exploring faster 
and less costly ways to implement predictive analytics. 

Predictive Analytics Development and Use Within Field Components 

Technological advances now enable prediction to be migrated closer to sources of data often 
referred to as edge components. The advances include: 

• Data stream processing, which is the processing of data as data get produced or received. 

• Miniaturization of chipsets, power, and network modules that support greater processing 
for longer durations and that leave a smaller physical footprint. 

The edge components may include traffic signals, traffic signal controllers, vehicle detectors, 
signal detectors, environmental sensors, and CCTV cameras. When the edge components are 
able to execute data stream processing and more advanced computation, they can be referred to 
as edge computing. 

Edge computing enables the application of prediction models without moving the data to the 
TMS data subsystem via communication subsystems, which reduces the cost of implementing 
predictive analytics while also improving speed and security. More specifically, this approach: 

• Lowers hardware computing costs by distributing processing across device hardware. 

• Lowers storage costs by reducing the amount of data needing storage in the data center. 
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• Lowers networking costs by reducing the volume of data to be transmitted to the data 
center. 

• Lowers security costs by storing and processing sensitive data at the source across many 
devices and by sending only nonsensitive data to the data center. 

While edge predictive analytics enables the analysis of data without having to move the data to a 
centralized location, it does not entirely replace the predictive analysis that takes place within the 
TMS data subsystem. Edge computing capabilities are advancing but not yet capable of handling 
the vast volumes and variety of data and computing power needed to train predictive models. 
Current capabilities can, however, run trained predictive models on new data as the new data are 
being generated. In particular, anomaly detection models such as rollover detection in video 
feeds can be pushed down and executed directly on edge devices to drive alerts that prompt 
immediate action. The data causing those alerts also can be transmitted to data centers for use as 
input for more complex predictive analytics models maintained within the software and/or data 
subsystems, thereby combining more data inputs than edge devices. At some point, models also 
may become developed and trained at the edge component level or at the roadside cabinetry or 
controller level. 

Predictive Analytics Using Integrated Edge Computing and Traffic Management System 
Data Subsystems  

Based on the symbiotic relationship between edge predictive analytics and centralized predictive 
analytics, many vendors already offer solutions that integrate the two. Each of the major 
cloud-computing providers has released field devices with computing capability (e.g., cameras), 
and IT equipment vendors also are marketing edge device solutions. Telecommunications 
providers also see an opportunity to either directly support edge analytics via their own 
business-to-business or business-to-customer solutions or by opening up their infrastructures to 
collaborators to accomplish the same. Vendors are now offering various levels of 
implementation of predictive analytics, meaning that TMS technicians can implement and refine 
algorithms or models to modify the operation of afield device or component and enable the 
device to process and share data so as to further refine predictive models embedded within the 
field component or to support the refinement of models housed within the TMS software 
subsystem. 

In implementing predictive analytics as part of a TMS, agencies have to select the most 
appropriate location for their predictive analysis (core versus edge). Beyond the core and edge 
paradigm, predictive analytics for a TMS can be implemented as part of an existing system in 
many different ways depending on an organization’s resources; skills; existing device 
capabilities; willingness to adopt a cloud; willingness to outsource data, processes, and 
decisionmaking to vendors; and desire to avoid vendor lock. 

The next subsection summarizes four different approaches to implementing predictive 
capabilities. Organizations may be able to implement varied predictive needs by using a single 
approach, but far more likely will be the use of different approaches based on predictive need. 
For example, the TMS may establish a prediction capability by using a homegrown, prediction 
software subsystem housed within agency servers that pulls processed device data into the data 
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subsystem or by using device components with prediction software embedded within the device. 
Conversely, the TMS might access prediction capability through an API data feed from a vendor, 
such as a vehicle probe data and analytics provider that has developed and integrated prediction 
modeling and delivers the prediction results in realtime. 

COMPUTER SERVICE OPTIONS FOR USE IN PREDICTIVE ANALYTICS 

Making the decision on where and how to implement predictive analytics requires awareness of 
terminology related to computer systems. This section first introduces the concepts in computer 
systems so that readers may better understand the various strategies for implementing predictive 
analytics. The section then presents four different ways predictive analytics can be implemented, 
the hardware and software they are composed of, and how the hardware and software interact 
with existing TMS logical and physical components. 

Computer Systems Architecture: Terminology Context Setting 

TMSs include physical components that are field based as well as servers located in a physical 
transportation agency building—such as a TMC—that house data and software. Some agencies, 
for a host of reasons, have transferred the responsibility for servers and storage to a vendor. In 
addition, some agencies have transferred responsibility for networking firewalls and security to a 
vendor. Such outsourcing of functionality is often referred to as infrastructure as a service (IaaS), 
and the vendor is referred to as a cloud-computing provider. Agencies may go further to 
outsource the standing up of operating systems, development tools, and specific software or 
applications. When the entire technology stack is outsourced, it is often referred to as software as 
a service (SaaS). 

In outsourcing an agency’s computing infrastructure, platform, or software to cloud vendors, the 
agency should rearchitect its systems to make the most of the cloud environment. Five 
approaches relevant to more efficient and more resilient capabilities for computer systems are 
cloud-native, platform-independent, and microservices architecture. Each is defined as follows: 

• Cloud-native architecture refers to applications that are designed to capitalize on the 
inherent characteristics of a cloud-computing software delivery model. The applications 
are typically hosted and run in a cloud. Four key principles of cloud-native applications 
are microservices, containerization, continuous delivery, and development-operations 
methodology for development. 

• Platform-independent architecture refers to software that can be used on a variety of 
hardware, operating systems, and software architectures. Being platform independent 
means an application requires less planning and less translation across an enterprise. For 
example, platform independence will enable an organization with many types of 
computers to write a specialized application once and have it used by virtually everyone 
rather than having to write, distribute, and maintain many versions of the same program. 

• Microservices architecture is an application development approach wherein a large 
application is built as a suite of components or services. Each service is independently 
deployable, organized around business capabilities (e.g., TMS logical operational 
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strategy or function), owned by a small team, loosely coupled with other components, 
and highly maintainable and testable. Microservices architecture enables the rapid, 
frequent, and reliable delivery of large, complex applications. It also enables an 
organization to evolve its technology stack. 

• Containerized computing refers to self-contained, lightweight virtualization technology. 
Containers are similar to virtual machines, except they virtualize only the guest operating 
system and applications instead of an entire computer. Containers are quicker and easier 
to set up than a virtual machine. Containers are good choices for moving away from 
traditional, on-premises infrastructure; making an existing monolithic application cloud 
native; and developing applications that run for hours at a time. Containers support 
greater vendor neutrality and support any programming language but are kept running, 
thus leading to potentially higher costs. 

• Serverless computing refers to a practice whereby workloads run on a server that hosts 
the functionality behind the scenes, but the server is not managed by the developer. 
Serverless functions are usually small, lightweight programmatic functions with a single 
purpose. That single purpose can be anything from getting details out of a database to 
displaying a notification. Most cloud providers offer serverless functions, which they 
may refer to as functions as a service. Providers bill only for the time the client’s 
serverless functions spend running. 

Agencies may consider deploying a small application or one that can easily split into many 
smaller microservices as a serverless application. A larger, more complex application may be 
better suited as a containerized application. Sets of tightly coupled services that cannot easily be 
broken down into small microservices are strong candidates for containers. With the preceding 
context outlined, the following four sections outline the four approaches to how predictive 
analytics can be implemented from the perspective of cloud or local services. 

Develop Prediction Within the Traffic Management System Data and Software Subsystems 

This approach uses servers or virtual servers to house software that supports predictive model 
development using machine-learning software and its algorithms. In this scenario, the device 
components do not have the needed computing power to implement machine learning and focus 
on relaying device data to a central location on-premises (data subsystem warehouse) where it is 
stored and analyzed to perform prediction that is then delivered to the operator through TMS UI 
software. The predicted data also may feed to a rules engine—a software program via an API to 
support business rules. The TMS serves as the main command and control interface to manage 
and monitor the acquisition and storage of device data, data preparation processing, predictive 
analysis development, monitoring, and prediction events communication. The TMS has three 
main components: computing servers, device components, and UI software. Each component is 
described as follows: 

• TMS in-house or vendor-based (cloud) servers—A set of computing servers equipped 
with machine-learning acceleration hardware such as a graphics processing unit (GPU), a 
specialized processor originally designed to accelerate graphics rendering, or a tensor 
processing unit (TPU), a specialized matrix processor developed for neural network 
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workloads and machine learning. Servers host data and software subsystems to support 
the following functions: 

o Collect and store device and third-party data. 
o Prepare the collected data for machine-learning development. 
o Develop and test machine-learning models. 
o Perform prediction on upcoming or historical data by using created machine-learning 

models. 
o Communicate predicted events to the UI software, back to the data subsystem, or to a 

rules engine for further automated actions. 
o Monitor collected data quality. 
o Monitor the machine-learning model’s prediction performance. 
o Receive commands from TMS. 

To perform those functions, the TMS data and software computing servers run the 
following software components: 

o Main API—Sends data ingestion, data preparation, model development, model 
deployment, predictions, and relaying prediction performance to the prediction 
management subsystem on the TMS. 

o Event API—Sends the predicted events generated by the machine-learning 
framework to the TMS rules engine (event management subsystem). 

o Data API—Receives data sent by the device. 
o Machine-learning framework—Creates, tests, and runs machine-learning models in 

TMS data and software subsystems and generates predictions by applying them to 
new data from edge devices. 

o Model repository—Stores machine-learning models generated by the 
machine-learning framework. 

o Data repository—Stores both raw data collected from edge devices and data prepared 
for machine-learning model development. 

• Edge device components—A set of device components (e.g., cameras, pneumatic tube 
counters, radar/laser, signal detectors, and environmental sensors) connected with little to 
no computing power scattered across the physical transportation network, which perform 
the following functions: 

o Capture raw data from devices. 
o Preprocess data if needed or if capable. 
o Cache captured data to avoid loss of data. 
o Communicate raw data or preprocess data to TMS computing servers. 
o Receive commands from the TMS rules engine and other physical subsystems. 
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To perform those functions, the computing servers run the following software 
components: 

o Main API—Operates data capture, optional data preprocessing and edge device 
calibration and adjustment and data communication services from the device 
management subsystem on the TMS. 

o Data API—Sends data to the TMS data and software subsystem computing servers. 

• Machine-learning subsystem(s)—A set of rules or even a machine-learning subsystem 
may have to be added to the existing TMS to enable the integration of computing servers 
and edge devices that perform the following tasks: 

o Set up and monitor data collection between edge devices. 
o Set up and monitor data flow between edge devices and computing servers. 
o Set up, deploy, and monitor device data preprocessing pipelines. 
o Develop, deploy, and manage data preparation pipelines. 
o Update devices’ firmware. 
o Adjust devices’ data output settings. 
o Calibrate devices. 
o Monitor devices’ data quality. 
o Monitor machine-learning model performance. 
o Discard and replace unsatisfactory machine-learning models. 
o Create, test, and deploy machine-learning models. 
o Receive and process predicted events from TMS data and software subsystem 

computing servers. 
o Communicate with other TMS subsystems. 
o Run prediction management graphical interface. 
o Manage accounts and access to edge devices and TMS data and software subsystem 

computing servers. 

To perform those functions, the TMS machine-learning subsystems may have to run the 
following software services: 

o Main UI software—Main UI services provide a graphical UI so that TMS operators 
can operate the prediction subsystems. 

o Access management services—Access management services provide identity access 
management for users and services of the TMS prediction subsystems. 

o Event management services—Event management services provide a distribution and 
monitoring interface for all predicted events submitted to various TMS subsystems. 



 

38 

o Prediction management services—Prediction management services provide a 
machine-learning development and deployment interface to the computing servers 
that house the data and software subsystems. 

o Data management services—Data management services provide a data management 
and data preparation interface for the computing servers that house the data and 
software subsystems. 

o Device management services—Device management services provide a data 
management and device calibration interface for devices. 

Develop Prediction Within the Traffic Management System Data and Software Subsystems 
and Device Components 

This approach to the implementation of machine learning to develop and refine predictive 
models is similar to the on-premises or cloud IaaS approach. The approach also is meant for 
deployment directly onto servers or virtual servers. The key difference is that instead of using 
devices with little computing power, this approach uses devices capable of applying predictive 
models directly to the local device data being collected. The device focuses on relaying not just 
raw data but also device prediction data (events) to the TMS data subsystem. The device also 
may be able to store and analyze events to perform even more complex predictions that are then 
sent to the TMS data subsystem via an API and, potentially, to neighboring roadside 
infrastructure. 

The Florida wrong-way-detection and -notification system described in Example: Florida 
Department of Transportation Traffic Management System is an example of this configuration. 
A sign located on an exit ramp is instrumented with a device to detect wrong-way movements. 
The detection algorithm communicates and triggers flashing lights that notify the wrong-way 
traveler. The device, a component of the traffic detection subsystem, also transmits an alert to the 
regional TMC through its data bus and to the DMS subsystem, which will activate field DMSs. 
The event also is pushed to the TMC operator graphical UI, where the operator can take specific 
actions to address the hazard—such as law enforcement mobilization or safety service patrol 
deployment. 

This option may include a predictive model within the field device as well as a predictive model 
within the TMS data and/or software subsystems. 

• TMS in-house or vendor-based (cloud) servers—The computing servers, either those 
housed by the agency or those of a third-party vendor, are equipped with machine-
learning acceleration hardware such as GPUs or TPUs, which perform the following 
functions: 

o Collect and store device data. 
o Collect and store devices’ predicted events data. 
o Prepare collected data for machine-learning development. 
o Develop and test machine-learning models both in the TMS subsystem and within 

field devices. 
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o Perform prediction based on real-time and historical data by using machine-learning 
models created within the TMS data and software subsystems. 

o Perform prediction on edge devices as the devices collect data. 
o Communicate predicted events between field devices and the TMS data subsystem 

and, potentially, directly within an operational-strategy-associated subsystem such as 
DMS or traffic signal control. 

o Monitor collected data quality. 
o Monitor machine-learning model prediction performance both for the device and the 

data and software subsystems. 
o Transmit alerts and data to the operator UI and receive commands from the operator 

UI. 
o Deploy (push) new predictive models for field devices—typically as a software 

upgrade push. 

To perform those functions, the TMS data/software subsystem computing servers run the 
following software components: 

o Main API—Sends raw data and edge-predicted events data ingestion, raw and edge 
predicted events data preparation, and edge sensor and TMS data and software 
subsystem machine-learning-model development; deploys predictive models both in 
the TMS data/software subsystems and on edge devices; performs predictions; and 
relays prediction performance to the prediction management subsystem on the TMS. 

o Event API—Enables TMS data and software subsystems to receive predicted events 
generated by edge devices and for the predicted events generated by TMS data and 
software subsystem and edge devices to be sent to the TMS event management 
subsystem. 

o Data API—Receives raw data sent by the edge devices. 
o Machine-learning framework—Creates, tests, and runs edge device and TMS 

data/software subsystem machine-learning-models from collected data or edge device 
predicted events and generates both TMS data and software subsystem and edge 
device predictions by applying them to new data or edge device predicted events. 

o Model repository—Stores machine-learning models generated on the TMS data and 
software subsystems or edge devices by the machine-learning framework. 

o Data repository (not shown)—Stores raw data and edge-device-predicted-events data 
collected from edge devices as well as data prepared for machine-learning-model 
development. 

• Edge device components with computational capabilities—A set of devices scattered 
across the physical transportation network and connected to the TMS data and software 
subsystem and the TMS, with enough computing power to enable each device to 
preprocess data and perform predictions in situ. Devices provide the following functions: 
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o Capture raw data from devices. 
o Preprocess collected raw data if needed or if capable. 
o Cache captured data to avoid loss of data. 
o Perform machine-learning-related data preparation on collected raw data. 
o Perform predictive analysis on collected raw data. 
o Receive commands from TMS. 
o Receive and deploy a new prediction model from TMS data and software subsystem. 
o Communicate raw or preprocess data to TMS data and software subsystem computing 

servers. 
o Communicate predicted events to TMS data and software subsystem. 

To perform those functions, edge computing devices run the following software components: 

o Main API—Operates data capture, optional data preprocessing, predictive model 
deployment, device calibration and adjustment, and data communication services 
from the TMS device management subsystem. 

o Event API—Enables each edge device to communicate to the TMS data and software 
subsystem and the TMS event management subsystem the predicted events they 
generate. 

o Data API—Sends raw data to TMS data and software subsystem computing servers. 

• Machine-learning subsystem(s)—A set of subsystems added to an existing TMS within 
the software subsystem, facilitating the integration of computing servers and edge 
devices, which perform the following tasks: 

o Set up and monitor data collection across edge devices. 
o Set up and monitor data flow between edge devices and TMS data and software 

subsystem computing servers. 
o Set up, deploy, and monitor edge devices’ data preprocessing pipelines. 
o Develop, deploy, and manage data preparation pipelines. 
o Update edge devices’ firmware. 
o Adjust edge devices’ data output settings. 
o Calibrate edge devices. 
o Monitor edge devices’ data quality. 
o Set up and monitor data flow between edge devices and TMS data and software 

subsystem computing servers. 
o Monitor machine-learning-model performance on TMS data and software subsystems 

and edge devices. 
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o Discard and replace unsatisfactory machine-learning models on TMS data and 
software subsystems and edge devices. 

o Create, test, and deploy machine-learning models by using containers on TMS data 
and software subsystems and edge devices. 

o Receive and process predicted events from TMS data and software subsystems and 
edge devices. 

o Communicate with other TMS subsystems. 
o Run prediction management graphical interface. 
o Manage accounts and access to edge devices and TMS data/software subsystem 

computing servers. 

To perform those functions, the TMS machine-learning subsystems run the following 
software services: 

o Main UI services—Main UI services provide a graphical UI so that TMS operators 
can operate the prediction subsystems. 

o Access management services—Access management services provide identity access 
management for users and services of TMS prediction subsystems. 

o Event management services—Event management services provide a distribution and 
monitoring interface for all predicted events submitted to the TMS. 

o Prediction management services—Prediction management services provide a 
machine-learning development and deployment interface to TMS data and software 
subsystems and edge devices with computing capabilities. 

o Data management services—Data management services provide a data management 
and data preparation interface to TMS data and software subsystem servers. 

o Device management services—Device management services provide data 
management, predictive model management, and device calibration service for edge 
devices with computational capabilities. 

Develop and Run Predictions by Using Containerized Computer Services 

This implementation is similar to the on-premises or IaaS implementation with devices capable of 
computing because it enables the implementation of predictive analytics at both the TMS data 
and software subsystems and field components. Rather than running systems by using 
on-premises servers or on-premises or hosted virtual servers, this implementation follows 
principles of modern data systems, often referred to as cloud-native implementation. 

Using this approach, data and process management found that the first two types of 
implementations can be deployed, scaled, and refreshed by using containers within a cloud but 
also within device components where containers can be deployed directly on device hardware 
and operating systems, similar to app updates pushed on a phone or laptop. In this type of 
implementation, a TMS manages and monitors all containers composing the system to optimize 
system performance, detect errors and failures, and recover quickly and seamlessly. TMS data 
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and software subsystems will still serve as the main command and control interface to manage 
and monitor data acquisition and storage, data preparation processing, predictive analysis 
development, monitoring, and prediction events communication at both the TMS data and 
software subsystem and edge device levels. Many examples of cloud offerings for containerized 
implementation of predictive analytics can be found among leading cloud providers. 

This implementation is composed of three main components, two of which are the TMS data and 
software subsystems, and which are implemented as a group of containers distributed atop a 
lightweight container management operating system. The features of the three main components 
are summarized as follows: 

• TMS in-house or vendor-based (cloud) servers—A set of containers running on-premises 
or in a cloud-based container management and orchestration environment. Each container 
is able to access storage, data processing, and machine-learning acceleration services 
(virtualized GPU or TPU) made available by the container management environment 
each container will use to perform the following functions: 

o Collect and store edge device data. 
o Collect and store edge devices’ predicted events data. 
o Prepare collected data for machine-learning development. 
o Develop and test machine-learning models for both TMS data and software 

subsystems and edge devices. 
o Package machine-learning models as stand-alone containers for TMS data and 

software subsystems and edge devices. 
o Deploy new containers on both TMS data and software subsystems and edge 

environments. 
o Manage and monitor deployed containers. 
o Perform prediction on upcoming or historical data by using created machine-learning 

models in the TMS data and software subsystems. 
o Perform prediction in the loop on edge devices as the devices collect data. 
o Communicate predicted events between edge devices, TMS data and software 

subsystems, and other TMS subsystems as well as UIs. 
o Monitor collected data quality. 
o Monitor machine-learning model prediction performance at both the TMS data and 

software subsystems and edge device levels. 
o Receive commands from the TMS. 

To perform those functions, core computing servers run the following software components: 

o Main API—Allows for raw data and edge-predicted-events data ingestion and 
preparation, edge and TMS data and software subsystem machine-learning model 
development, container development both in the TMS data and software subsystem 
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and on edge devices; performs predictions; and relays prediction performance to the 
prediction management subsystem on the TMS. 

o Event API—Enables the TMS data and software subsystem to receive predicted 
events generated by edge devices and for the predicted events generated by TMS data 
and software subsystem and edge devices to be sent to the TMS event management 
subsystem. 

o Data API—Receives raw data sent by edge devices. 
o Machine-learning framework—Creates, tests, and runs edge and TMS data and 

software subsystem machine-learning models from collected data or edge-predicted 
events and generates both TMS data and software subsystem and edge device 
predictions by applying them to new data or edge-predicted events. 

o Model repository—Stores the machine-learning models generated on the TMS 
data/software subsystem or edge by the machine-learning framework. 

o Data repository—Stores raw data and edge-predicted-events data collected from edge 
devices as well as data prepared for machine-learning-model development. 

o Container orchestration framework—Automates much of the operational effort 
required to run containerized workloads and includes a wide range of things needed 
to manage a container’s lifecycle, such as provisioning, deployment, scaling (up and 
down), networking, and load balancing. 

• Device components with computational capabilities—A set of containers running on a 
device container management and orchestration environment running across a distributed 
network of devices scattered along the physical transportation network. Each container is 
able to access storage, data processing, machine-learning acceleration services 
(virtualized GPUs or TPUs), and virtual device interfaces made available by the edge 
container management environment each container will use to perform the following 
functions: 

o Capture raw data from devices. 
o Preprocess collected raw data if needed or if capable. 
o Cache captured data to avoid loss of data. 
o Perform machine-learning-related data preparation on collected raw data. 
o Perform predictive analysis on collected raw data. 
o Receive commands from the TMS. 
o Receive and deploy new container model from the TMS data and software subsystem. 
o Manage and monitor deployed containers. 
o Communicate raw or preprocess data to TMS data and software subsystem computing 

servers. 
o Communicate predicted events to TMS data and software subsystem and the TMS. 
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To perform those functions, the edge containerized environment runs the following software 
components: 

o Main API—Operates data capture, optional data preprocessing, predictive model 
deployment, device calibration, and adjustment and data communication services 
from the device management subsystem on the TMS. 

o Event API—Enables each edge device to communicate to the TMS data and software 
subsystem and TMS event management subsystem the predicted events they generate. 

o Data API—Sends raw data to TMS data and software subsystem computing servers. 
o Device container orchestration framework—Automates much of the operational effort 

required to run containerized workloads across a network edge device, including a 
wide range of things needed to manage a container’s lifecycle, such as provisioning, 
deployment, scaling (up and down), networking, and load balancing. 

• Machine-learning subsystem(s)—A set of subsystems added to an existing TMS, 
facilitating the integration of the TMS data and software subsystem and edge container 
environments, which perform the following tasks: 

o Set up and monitor data collection across edge containers. 
o Set up and monitor data flow between edge and TMS data and software subsystem 

containers. 
o Set up, deploy, and monitor edge container data preprocessing pipelines. 
o Develop, deploy, and manage containerized data preparation pipelines. 
o Manage and orchestrate both edge and TMS data and software subsystem containers. 
o Update edge devices’ firmware and operating systems. 
o Adjust edge container data output settings. 
o Calibrate edge devices. 
o Monitor edge devices’ data quality. 
o Set up and monitor data flow between edge and TMS data and software subsystem 

containers. 
o Monitor machine-learning model performance on TMS data and software subsystem 

and edge containers. 
o Discard and replace unsatisfactory TMS data and software subsystem or edge 

containers. 
o Create, test, and deploy machine-learning models by using containers on TMS data 

and software subsystem and edge devices. 
o Receive and process predicted events from TMS data and software subsystem and 

edge devices. 
o Communicate with other TMS subsystems. 
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o Run prediction management graphical interface. 
o Manage accounts and access to edge devices and TMS data and software subsystem 

computing servers. 

To perform those functions, the machine-learning subsystems run the following software 
services: 

o Main UI services—Provide a graphical UI so that TMS operators can operate 
prediction subsystems. 

o Access management services—Provides identity access management for users and 
services of TMS prediction subsystems. 

o Event management services—Provides a distribution and monitoring interface for all 
predicted events submitted to a TMS. 

o Prediction management services—Provides a machine-learning development and 
deployment interface to the TMS data and software subsystem and edge computing 
devices. 

o Data management services—Provides a data management and data preparation 
interface for TMS data and software subsystem servers. 

o Device management services—Provides data management, predictive model 
management, and device calibration service for edge intelligent devices. 

o Container management services—Provides a semiautomated means to orchestrate the 
containerized predictive data pipeline in a TMS data and software subsystem and 
edge environment to enable the TMS to manage a containerized predictive data 
pipeline’s lifecycle, including provisioning, deployment, scaling (up and down), load 
balancing, and retirement. 

Outsourcing Predictive Analytics Implementation 

This approach to developing and implementing machine learning or other forms of predictive 
models is similar to the cloud-native approach. It is running on a containerized environment for 
both the TMS data and software subsystems as well as for the edge device. Rather than having to 
manage containers directly to orchestrate the different data pipelines to collect data, train models, 
deploy them and monitor them; this implementation is done on top of a cloud vendor 
infrastructure and machine-learning-software service. This solution circumvents most of the 
difficult and cumbersome orchestration tasks and provides a straightforward way to implement 
predictive analytics data pipelines from devices to the TMS data and software subsystems and/or 
UI. This implementation allows the use of already-trained and ready-to-use proprietary machine 
learning that is made available by the vendor. 

The TMS data subsystem serves as the main command and control interface that manages and 
monitors the acquisition and storage of sensor data, data preparation processing, predictive 
analysis development, monitoring, and prediction events communication through the vendor 
service as follows: 
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• Vendor infrastructure—A machine-learning computing environment offered as part of a 
cloud-computing service that abstracts the hardware and low-level software needed to 
implement predictive analytics. Vendor infrastructure offers a suite of services to create, test, 
deploy, and manage predictive data pipelines. The vendor infrastructure environment 
performs the following functions: 

o Collect and store raw data from edge devices. 
o Prepare the collected data for machine-learning development. 
o Develop and test machine-learning models by using collected data. 
o Perform predictions on upcoming or historical data by using created machine-learning 

models. 
o Communicate predicted events to TMS. 
o Monitor collected-data quality. 
o Monitor machine-learning-model’s prediction performance. 
o Receive commands from TMS. 
o Deploy and manage new predictive models on TMS data and software subsystem and 

at the edge. 
o Communicate predicted events to TMS. 

To perform those functions, TMS data and software subsystem computing servers run the 
following software components: 

o Vendor API—Allows for the management of multiple data pipelines performing such 
tasks as data ingestion, data preparation, model development, prediction, and 
predicted-event communication to the TMS. 

o Event API—Enables the predicted events generated by the data pipelines 
implemented on the vendor service to be sent to the TMS event management 
subsystem. 

• Machine-learning subsystems—A set of subsystems added to the existing TMS enabling 
its integration with vendor services for performing the following tasks: 

o Set up and monitor data collection between edge devices. 
o Set up, deploy, and manage data preparation pipeline. 
o Deploy predictive data pipeline at the edge. 
o Monitor edge data pipeline prediction quality. 
o Monitor machine-learning-model performance. 
o Discard and replace unsatisfactory machine-learning models. 
o Create, test, and deploy machine-learning models. 
o Communicate traffic management predictions to TMS subsystems. 
o Run prediction management graphical interface. 
o Manage accounts and access to the vendor service. 
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To perform those functions, TMS machine-learning subsystems run the following software 
services: 

o Main UI services—Provide a graphical UI so that TMS operators can operate 
prediction data pipelines deployed on the vendor service. 

o Access management services—Provide identity access management for the vendor 
service for users and services of the TMS prediction subsystems. 

o Event management services—Provide a distribution and monitoring interface for all 
predicted events submitted to the TMS by the vendor service. 

o Vendor management services—Enable TMS users and services to send requests and 
actions and receive data, models, and data pipeline status information through the 
vendor service API. 

When outsourced, a vendor product may be provided as a stand-alone system with its own 
web-based interface. Or the vendor may push the prediction to the TMS data subsystem, which 
then promulgates the information—based on logic rules—to the relevant 
operational-strategy-associated subsystems and to the operator UI to inform specific actions and 
support specific functions. 
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CHAPTER 4. PREDICTIVE ANALYTICS CONSIDERATIONS 

Several key considerations are involved in the planning for the adoption and use of predictive 
analytics in a TMS. This chapter covers high-level considerations for implementing predictive 
analytics, such as current TMS capability, resources, funding, and data. The more significant 
range of issues to consider in the pursuit of predictive analytics is organized across the following 
three categories: 

• Data and data management—Predictive analytics typically requires data and unique 
computing capabilities. Agencies adhering to data management policies and practices 
may find their data and computational tools insufficient for the use of predictive analytics 
in traffic management decisionmaking. For example, most agencies do not store their 
CCTV camera video beyond a limited duration, if at all. Thus, the opportunity to develop 
machine-learning models may be limited. Predictive analytics that rely on smaller event 
datasets that make use of regression models may still be viable. An example of such an 
application is given in chapter 6: the Maryland Department of Transportation (MDOT) 
incident duration and queue length prediction too. 

• Human resources and institutional considerations—Predictive analytics in a TMS may 
represent a shift from reactive decisionmaking to more future-oriented, proactive 
decisionmaking for TMC operators and managers. Using real-time information from the 
TMS, TMC operators and managers currently make decisions based on descriptive and 
diagnostic analytics, experience, and intuition. The introduction of predictive analytics 
into traffic management may influence how traffic management staff use and trust data. 
Other considerations include managers’ and operators’ workflows, tasks, technology 
interfaces, and organization policies and practices. 

• Implementation and maintenance considerations—Predictive analytics from the modeling 
perspective is not static. Rather, predictive analytics models should be routinely 
reassessed, retuned, or even rebuilt as travel behaviors and patterns; event types, 
locations, and frequencies; data sources and quality; and even weather events change. 

The information presented in this chapter discusses predictive analytics from a data, resource, 
and policy perspective. Organizations must recognize that before any TMS deployment 
decisionmaking, including predictive analytics, they must begin with defining the need and then 
adhere to standard processes. That beginning includes the introduction or adjustment of any 
technology, tool, or capability within either the physical or logical components of a TMS. Report 
Decision Support Methods and Tools for Traffic Management Systems delves in significant depth 
into considerations associated with the selection and use of DSTs.(1) The considerations are also 
introduced in chapter 5 of this report. 

DATA AND DATA MANAGEMENT CONSIDERATIONS 

For predictive analytics to become operable in a TMS, transportation agencies have to adopt data 
management practices and policies that support cost-effective options for processing, integrating, 
and analyzing large volumes and a variety of data. Currently, TMSs typically operate using 
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databases or subsystems with relatively small, structured, human-manageable datasets stored on 
internal servers. And few people within the organization prepare or analyze the data. Within the 
TMS, data are collected to meet a specific need. Developing predictive models is an exploratory 
exercise; it may not be immediately clear which data and what duration of an archive may prove 
valuable or may not. Thus, data not traditionally managed for a TMS or managed at a level of 
granularity needed for TMS DSTs may be different from the data needed for a predictive model. 

Databases or subsystems used by TMSs typically take an ETL process, a rigid data model 
(database schema), and a schema-on-write, or schema-first, approach to bringing data into the 
system. During the process, data get transformed, filtered, and removed so that the data will fit 
into a structured table. As such, data that get stored are processed versions of the original data. In 
addition, data access rules (governance) are applied that aim to preserve the processed data and 
to avoid potential corruption or deletion of the data not only for the TMS but for the broader 
transportation enterprise. Most agencies’ data management focuses on maintaining transformed 
and processed data. 

An alternative method involves archiving of data in an unaltered, unprocessed, raw format called 
the schema-on-read or schema-last approach. The method enables raw data to come into the 
system and takes a shared and distributed approach that enables many users to create unlimited 
numbers of processed data sets, analyses, and data products from raw data. The method 
represents a fundamental concept of modern data management that needs to be understood.(21) 
Users then develop processes to clean data specific to their uses. The transformation process, if 
flawed, can be revised and reapplied to the raw data for consistency. 

Data for Predictive Analytics 

Data considerations for predictive analytics necessitate answers to the questions “What kinds of 
data?” and “How much data?” within the context of moving from a traditional data management 
approach to a modern, big-data-management approach as follows: 

• Volume is the main aspect of a big dataset, and big data are generally considered to be 
more than a terabyte; however, the size characterization of big data is continuously 
changing. 

• Variety refers to structured and unstructured data present in big-data workflows as well 
as the ability to combine and use those various data types to gain insights that were 
difficult or even impossible to attain before analytics powered by big data. Structured 
data are easy for machines to handle—especially when it comes to searching, sorting, and 
storing data in relational databases. Unstructured data are the opposite: they include video 
files, audio files, free-form text, and other data that do not conform to traditional data 
structures and are therefore difficult for machines to categorize. Examples of unstructured 
data that may be of potential value in predictive analytics are lidar data, unmanned 
aircraft system video data, citizen reports delivered via social media services, and data 
from response vehicles with camera systems. 

• Velocity is defined as the speed at which data get generated, which may vary by data 
source. For example, crowdsourced data are typically high-velocity data sources, with 
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information transmitted every 1 or 2 min—and, potentially, even more rapidly—
compared with traditional transportation data sources. Data latency also is a change—
with information accessed with less than a 5-min delay rather than typical delays such as 
with certain wireless-technology reader data that require a vehicle to pass two stationary 
points before data get collected. The volume of these data also can vary because the data 
can surge in response to newsworthy events. For instance, an agency using social media 
and crowdsourced data to gather information from users on road closures due to flooding 
might receive a 10- or even a 100-fold increase from reports compared with a “normal” 
day. 

• Veracity refers to how accurate or truthful a dataset may be. In the context of big data, 
veracity is not just about the quality of the data themselves but also about the 
trustworthiness of the data source, the data type, and data processing. The veracity 
associated with certain big data can vary dramatically based on shifts in the user base 
market share upon which the data get collected. For example, the number of the first 
detection of incidents in Iowa DOT by using data from a free navigational application 
nearly quadrupled during a 4-yr period, indicating greater market share and data value.(22) 

Conversely, during March 2020, with travel restrictions in place, the number of reports in 
Massachusetts declined instantly by more than 50 percent from the free navigational 
application data. Likewise, the veracity of vehicle probe data may decline significantly 
during night hours on roadways with low traffic volumes. 

• Value denotes how big datasets contribute to improving the performance of an agency 
and a TMS. Value involves determining a benefit and estimating the significance of that 
benefit across the enterprise. Big data and its management are not trivial in terms of cost; 
thus, when pursuing a big-data application—whether for descriptive, diagnostic, 
descriptive, or prescriptive analytics—an agency has to estimate value. That value will be 
a function of data quality as well as of potential uses across the enterprise. For example, 
vehicle probe speed data may be of tremendous value from an operations perspective, but 
it can generate value for planning model calibration and validation, for work zone 
management, and even for project prioritization. 

One additional critical element to consider—particularly with predictive analytics—is attention 
to the training data needed to develop predictive models and to the testing data needed to validate 
predictive models. Whether for machine-learning-focused, high-volume, and 
variety-data-supported predictive analytics or for traditional predictive analytics, a model cannot 
offer robustness without data of sufficient variety and representativeness. For example, the 
predictive models the finance industry developed to detect potentially fraudulent transactions are 
based on hundreds of millions—or billions—of dollars of transactions and with numerous data 
fields. Moreover, the models are often self-adjusting based on new data. For some transportation 
applications, data may just not be sufficiently voluminous or may not be well labeled to support 
predictive modeling. 

The question of training data and the volumes of data needed is a function of the specific need 
for prediction and its intended use. Such data considerations will influence TMS data, 
communications, and hardware subsystems requirements such as the database system(s) chosen 
to organize data, the need for software and servers that support high-velocity stream processing, 
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and the methods of cleaning and visualizing data. Conversely, if model development is 
approached using external entities (e.g., a consultant or university collaborator), the focus will be 
on transfer or access to the larger volume of data and security associated with certain data types. 

Modern Data Management 

Data management for predictive analytics requires evolution from traditional data management 
at agencies Pecheux, Pecheux, and Ledbetter described how data from emerging technologies 
have the potential for new insights and solutions and require modern data management methods: 

The volume and speed at which these data are generated, processed, stored, and sought 
for analysis is unprecedented and will fundamentally alter the transportation sector. With 
increased connectivity among vehicles, sensors, systems, shared-use transportation, and 
mobile devices, unexpected and unprecedented amounts of data are being added to the 
transportation domain, and these data are too large, too varied in nature, and will change 
too quickly to be handled by traditional database management systems. As such, modern, 
big data methods to collect, transmit/transport, store, aggregate, analyze, apply, and share 
these data at a reasonable cost need to be accepted and adopted by transportation agencies 
if they are to be utilized to facilitate better decision-making.(22) 

Data subsystems are designed to be flexible when it comes to changes in hardware and software, 
to allow for structured data and unstructured data, and to distribute data management and storage 
in a cloud. Data subsystems also feature decoupled software and hardware, which allows for 
flexible updates and upgrades—in contrast to traditional data management systems, which are 
characterized as having more rigid and inflexible designs that include predefined hardware and 
software requirements, database schemata, and other system requirements that are not easily 
modifiable. 

Figure 8 shows the differences between a current TMS data subsystem—in the box labeled 
“Traditional data system”—and a modern data subsystem—in a black box. Most TMS data 
subsystems have processes to organize, clean, and store structured data in a relational database, 
and they use these data to publish reports, deliver analytics dashboards, and push data to other 
subsystems or a UI. 

The modern data system approach involves loading raw data into a data lake or flexible storage 
platform. Within the data lake, data at any scale—whether unstructured, semistructured, or 
structured (traditional relational database)—are maintained. The flexible storage platform offers 
the flexibility to develop decentralized analytical pipelines that are created based on individual 
requirements. The data lake, with regard to a TMS, may be a transformation of data subsystems, 
but more realistically, it may reside outside the TMS—perhaps with the transportation agency 
enterprise data system. The TMS data subsystem would then access various data from the data 
lake to support predictive model development. Conversely, analysts may use the enterprise data 
lake and its tool to support model development, exporting necessary data from the TMS data 
subsystem to the data lake. The analytical pipelines are similar to traditional ETL and leverage 
relational database systems. In addition to data lakes and modern data system architecture—and 
central to understanding big data in transportation—are certain concepts as follows:(21) 
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• Cloud-computing services are online virtual infrastructure, software, and other IT 
services that are hosted on large external server clusters rather than on-premises. 
Cloud-computing services are often ubiquitous with big data and offer scalability, 
flexibility, reliability, availability, and cost-effectiveness. Cloud-computing storage 
services are typically the first cloud-computing services that organizations adopt because 
such services can greatly reduce the costs associated with storing, managing, archiving, 
sharing, and securing large amounts of data compared with on-premises storage. As noted 
in Chapter 3, cloud-computing services require changes to computer systems architecture 
to realize the benefits of the platform. 

• Distributed computing is a method of efficiently performing a single computing task by 
dividing it across multiple servers. It is widely used in big data, since individual servers 
are too small to handle big-data-processing tasks on their own. Distributed computing is 
implemented through distributed computing frameworks that run on clusters of servers. 
Distributed computing frameworks enable computing tasks to scale easily, since they 
need only the addition of new servers to their clusters to improve their performance rather 
than having to upgrade or replace them. 

• Distributed storage is the technique of storing large amounts of data on a distributed 
network or cluster of drives and servers. Typically, cloud-computing service providers 
manage this process by use of a method that is transparent to users. 

 
© 2020 National Academy of Sciences. 

Figure 8. Diagram. From traditional data systems to modern data system architecture.(22) 
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HUMAN RESOURCES AND INSTITUTIONAL CONSIDERATIONS 

Data and predictive analytics will be part of a larger workflow system at agencies that consist of 
human operators, managers, leaders, collaborators, and other stakeholders who currently use 
technologies and tools to meet traffic management goals and objectives. In addition, agency 
personnel operate within an organizational structure composed of roles, responsibilities, policies, 
procedures, work culture, and in many cases, a TMC environment. 

The TMC itself is a complex environment, with many channels of dynamic information 
continuously flowing in and out through automated and human-interface activities. Some TMCs 
operate with staff around the clock, while some are staffed during weekday peak periods. Some 
TMCs are colocated with other response functions such as for public safety (e.g., 911 or law 
enforcement) and emergency response. TMC operators may access multiple platforms and tools 
depending on their TMSs, often spread across two, three, or even more monitors. 

Advanced, emerging, and continuously evolving technologies and tools—such as big data, 
modern data management practices, and predictive analytics—will be used by human operators 
for planning, resource allocation, and operational strategies, including specific actions to take 
within seconds, minutes, or longer time horizons such as weekly or quarterly. Interaction 
between the predictive analytics information interface and human knowledge, reasoning, and 
decisionmaking will determine the quality of the outputs or outcomes of each task. For example, 
operators have to multitask and work effectively on both onsite and remote teams, within their 
own agency, and with other organizations while being able to respond quickly and effectively to 
network performance.(23) Because humans are the mediators of the information at a TMC, their 
work and the design of their environments affect the implementation and use of predictive 
analytics. 

Predictive and prescriptive analytics may introduce new types of data and processes that affect 
decisionmaking at TMCs—potentially beyond the changes in decisionmaking that are already 
being ushered by the introduction of descriptive and diagnostic analytics that integrate many 
real-time data. For example, agencies that typically assess their safety service patrol routes on an 
annual or less frequent basis might use predictive analytics to adjust routing quarterly. 
Conversely, some TMC operators who had to manually bring CCTV feeds to the main screen 
now do not have to do so, because the nearest CCTV feeds to the geolocation of an incident are 
brought up passively. At the operator and manager levels, predictive analytics will not replace 
commonsense decisionmaking; rather, it will be a new set of data points to interpret in 
decisionmaking. 

The critical role of predictive analytics in effective decisionmaking makes operator, manager, 
and institutional trust necessary, and the future-oriented outputs of predictive analytics warrant 
careful consideration with human decisionmaking. Predictive analytics does not generate an 
exact result or absolute truth, but, rather, a predicted value with an associated confidence score 
and statistics with confidence bands and levels of uncertainty.(21) For example, early research 
indicates a significant level of false-alarm rates associated with predictive analytics, which has 
implications for user trust and the successful uptake of predictive analytics at an agency or 
TMC.(24) Given that predictive analytics makes a statement about the future—with varying 
degrees of certainty—the introduction of predictive analytics should adhere to agile development 
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processes with frequent feedback from end users. Predictive analytics developers have to 
consider human and organizational factors within the broader, complex TMS context that 
includes personal knowledge; team experience; other data, including descriptive analytics; and 
organizational policies, procedures, and culture. 

Situating predictive analytics and the interpretation of the outputs from decisionmaking among 
the myriad contextual factors is critical to building user trust and increasing the accuracy of 
predictive analytics for the long term. For example, when operators make an incorrect decision, 
such as responding to a false alarm, they lose trust in automation.(25) Further, operators may be 
prone to unintentional human error as a result of human and organizational factors such as task 
overload or decreased vigilance.(26) As such, careful consideration and analysis of the human 
factors at TMCs—such as operator cognitive processes, the usability of predictive analytics 
output and results, workflow, environment design, teamwork, and communication—should be 
applied because they may influence the uptake and effective use of predictive analytics.(23) 

Lastly, recognizable tradeoffs occur between building internal capacity at a TMC for predictive 
analytics versus using external expertise, including vendors and other third parties. Because 
predictive analytics requires a requisite level of technical knowledge to develop and 
implement—in addition to the requirements for big data—TMCs might use vendors, universities, 
consultants, other experts, and customized or off-the-shelf solutions to support their internal 
knowledge bases. Agencies also might consider that internal knowledge and capacity are 
necessary to serve critical decisionmaking functions. 

IMPLEMENTATION AND MAINTENANCE CONSIDERATIONS 

Predictive analytics can take various implementation approaches for TMSs, as discussed in 
chapter 3 and as follows: 

• On-premises or cloud with traditional devices. 
• On-premises or cloud with edge devices having computational capabilities. 
• Cloud native (containerized) with smart devices. 
• Cloud-native SaaS with smart devices. 

Table 2 provides a generalized comparison of the approaches across such features as cost, 
ownership, and resiliency. Each approach has advantages and disadvantages along a continuum 
of implementation features for predictive analytics. Each feature is discussed in table 2. 
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Table 2. Comparison of predictive analytics implementation approaches. 

Implementation Features for 
Predictive Analytics 

On-Premises 
or Cloud 

With 
Traditional 

Devices 

On-Premises 
or Cloud 

With 
Computing-

Capable 
Devices 

Cloud Native 
With 

Computing-
Capable 
Devices 

Cloud 
Vendor SaaS 

With 
Computing-

Capable 
Devices 

Cost  L H M M1 
Real-time functionality (e.g., 
ability to conduct analytics) 

L M H H 

Expertise in managing a system 
that supports real-time prediction 

L L L M 

Resiliency (e.g., cyber, natural 
disaster, and staff expertise) 

H/L H/L M/H M/H 

Flexibility (e.g., peak demand, 
growth in data, and new models) 

L L H H 

Institutional fit with traditional 
TMS culture 

H M L L 

Ownership and analytics 
transparency 

H M L L 

Delivery speed and uptime (e.g., 
data access by vendors and users) 

L L H H 

1Depending on the scale, it can be low, but the cost can increase exponentially as data and models grow. 
H = high; L = low; M = medium. 

Brief discussions of each implementation feature are presented below: 

• Cost—The costs associated with using on-premises architecture with traditional devices 
are managed within an agency and relatively fixed; however, the computational needs for 
predictive-model development are limited to tools that may not support big-data 
analytics. Thus, on-premises traditional devices have relatively stable and lower costs 
compared with the three other approaches. The introduction of smart devices, may 
generate potentially far greater volumes of data and complementing data transfer costs 
from the edge to the central system. Additionally, higher costs are associated with the 
smart devices themselves, which may include infrastructure costs as well as monthly 
service costs. The use of cloud-native architecture or SaaS gains efficiencies in storage 
and computational costs by provisioning servers only as needed. 

• Real-time functionality—The fixed nature of on-premises server computation power or 
the use of cloud-computing services without architecting to take advantage of 
cloud-computing capabilities limits real-time functionality for predictive analytics. Many 
agencies simply do not have the computational power and speed needed for big-data 
analytics that supports real-time decisionmaking. By using smart devices, even with 
on-premises architecture, agencies can use the vendor-developed and -tested predictive 
analytics embedded in the device to support greater functionality. 
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• Expertise in managing a system that supports real-time prediction—Transportation 
agencies’ IT departments are evolving to support greater real-time data pipelines and 
descriptive and diagnostic analytics. In some cases, the management of such systems is 
now the responsibility of the ITS or operations group rather than the State or 
governor-level IT organization. In other cases, the pendulum is swinging in the opposite 
direction. Data governance processes as well as expertise with tools and services that 
passively monitor the fidelity of predictive models still need further focus and 
development within a transportation enterprise. Staffing shortfalls strain the ability to 
quickly grow and maintain that expertise. 

Moreover, at times, analytics may require the processing of personally identifiable 
information, and thus, agencies may have to self-exclude from accessing data that support 
model development and fidelity assessments. That is where a SaaS architecture for predictive 
analytics systems management may have strength. Many vendors already access a host of 
high-fidelity data to support the streaming descriptive and diagnostic analytics products their 
TMSs already consume, and many of the same capabilities position those vendors to manage 
systems for real-time prediction. 

• Resiliency—If transportation IT and employees diligently practice such protocols as 
diversification of infrastructure (multiple, redundant servers), maintenance of physical 
security, monitoring of applications and systems hardware, and security procedures, then the 
on-premises architecture can be highly resilient. However, in many circumstances, staff 
shortages and turnover within transportation enterprises along with systems that often remain 
untouched for years, if not decades, result in nonresilient systems. Because providing 
resilient systems is a core value proposition by cloud service providers, such vendors allocate 
resources to ensure resilience with multiple levels of redundancy. Moreover, they tend to 
replace and upgrade computing infrastructure more quickly and have workforces that can 
continually advance skills to meet future cyberthreats. 

• Flexibility—Flexibility represents the great divide between on-premises versus cloud-native 
architectures. Surges in demand for applications (e.g., 511 website hits during a hurricane), 
the generation of data (e.g., free navigational app reports during post–Super Bowl traffic), 
and significant growth in data and processing needs (e.g., using real-time connected-car or 
fleet dashboard cameras) may quickly exceed the capacity of on-premises servers. 
Cloud-native or cloud-computing SaaS is able to provide the right set of servers for data 
storage and varied computational needs and offers both tremendous flexibility and potential 
cost savings. Agencies have to respect that flexibility, lest wayward or poorly defined 
computations result in unexpectedly high costs. 

• Institutional fit with traditional TMS culture—TMSs have been developed mainly 
through the traditional systems engineering process. That is, a TMS is often a large, 
complex system designed to ingest specific data in specific formats and via specific 
processes and to share these data in standardized interfaces. A TMS is difficult and costly 
to change; adding new data sources, changing operator interfaces, and evolving 
workflows embedded in the TMS software take up significant amounts of time and 
resources. The on-premises architecture is well aligned with the traditional TMS culture 
in terms of access and the use of tools to support the TMS, modification request 
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processes, procurement processes, and the like. Thus, implementing predictive analytics 
model development as a core function that interfaces with the TMS aligns with traditional 
TMS culture. Leveraging cloud-native and cloud-computing SaaS architectures requires 
containerization and migration of some components of the TMS, nontraditional 
procurement mechanisms with variable costs, and a skills realignment within the staff 
that develop, test, refine, implement, and manage systems. 

• Ownership and analytics transparency—When agencies use predictive analytics through 
on-premises architectures, they build and own the predictive models, the input data, and 
the outputs and interfaces. When accessing devices with computational capabilities, most 
often the sensors are vendor controlled, and the edge analytics also are vendor-controlled 
black-box processes. The agency acquiesces to that element of ownership. In moving to a 
cloud-native platform, organizations can access a range of predictive-modeling tools (i.e., 
tools that help develop a model). Such tools represent another potential black box and 
may be changed by the cloud provider. Likewise, interface and visualization tool 
offerings available through the cloud-native environment may evolve. And, most 
significantly, if the agency chooses to switch its cloud provide or SaaS vendor, the 
predictive models may not be portable because of their ownership by the SaaS vendor. 

• Delivery speed and uptime—This aspect is the percentage of time that an agency’s 
server, website, and applications are active and able to function during a period—whether 
a week, a month, or a year. Generally, the uptime and delivery speed for cloud-native and 
cloud-computing SaaS architectures are greater than those for on-premises options given 
cloud systems’ redundancies and dynamic allocation to support access. Thus, 
cloud-native descriptive, diagnostic, and predictive analytics tools have better uptimes 
and delivery speeds compared with on-premises architectures. Cloud vendors can offer 
uptime of 99.9 percent (down 8.8 h in a year) or even 99.9999 percent (down about 30 s 
in a year); the higher the required uptime guarantee, the higher the cost. Except for 
mission-critical systems that are required to function even if cellular or the Internet goes 
down, most cloud-native and SaaS architectures offer better value. 

SUMMARY OF PREDICTIVE ANALYTICS CONSIDERATIONS 

While traditionally, transportation agencies have been implementing and integrating new 
processes in-house with support from their IT infrastructures, predictive analytics presents 
agencies with challenges as follows: 

• Most transportation agencies are operating traditional IT hardware and systems that are 
not capable of handling the data and computing load required to develop and deploy 
predictive analytics. 

• Predictive analytics development requires a large amount of labeled data, which 
transportation agencies typically lack. 

• Deploying predictive analytics IT infrastructure on-premises may be cost prohibitive. 
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• Cloud infrastructure adoption at transportation agencies is just starting, and agencies are 
still learning how to use the cloud. 

• Transportation agencies may not have enough data to train efficient predictive data 
models. 

• Vendors have more data and for about a decade have been developing predictive 
algorithms to be used as a service. They may be able to provide cost efficiencies that 
agencies may never reach. 

Consequently, it is likely that agencies will first and foremost implement predictive analytics by 
using the SaaS implementation because it is the easiest to integrate and implement. Other 
implementations (i.e., on-premises or cloud IaaS using traditional devices, on-premises or cloud 
IaaS using predictive-devices implementation, and cloud-native predictive analytics) require 
significant effort, time, and expenses. Agencies will have to evolve their IT infrastructures and 
data to the level required to perform predictive analytics. Conversely, agencies may turn to their 
university or consultative support to collaborate in the development of in-house models. 

Further, it is likely that some transportation agencies with relatively low traffic such as those of 
Idaho, Montana, Utah, and Vermont may have difficulties in building datasets that are 
representative of their amounts of traffic and the rarity of events they would like to predict. As an 
alternative, State transportation agencies might consider collaborations when developing 
predictive analytics through such programs as a Federal pooled-fund study. By combining data 
among States, agencies may generate more representative datasets that can better train predictive 
models. 
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CHAPTER 5. READINESS CHECKLIST 

This chapter guides agencies through a readiness assessment checklist for predictive analytics. 
Agencies can use this readiness assessment checklist to begin thinking about the current and 
future capacities necessary to integrate predictive analytics into TMSs and TMCs. The readiness 
checklist consists of five levels: 

• Policy readiness. 
• System readiness. 
• Data readiness. 
• Acquisition readiness. 
• Maintenance readiness. 

The readiness checklist is intended—after some initial work has been completed—to confirm the 
need for predictive analytics capability and a corresponding DST. The needs assessment effort 
should come first and be foremost. FHWA report Decision Support Methods and Tools for 
Traffic Management Systems specifies a five-step process for identifying needs for a DST as 
follows:(1)  

1. Identify stakeholder and DST goals, making sure to include end users as well as those 
with institutional, operational, or technical responsibility. 

2. Elicit and document user and system needs through outreach mechanisms such as 
workshops and interviews and use the interactions to also educate stakeholders. 

3. Reconcile, validate, and prioritize stated needs to resolve conflicts or close gaps and 
thereby deliver a unified, prioritized vision of DST needs. 

4. Verify whether the system is feasible and necessary, delineating what may or may not be 
addressed. 

5. Define project scope, budget, and time constraints. 

In the context of the five-step process, the five readiness components presented herein overlap 
step 4. 

POLICY READINESS 

Policy readiness refers to the practices, governance structures, and procedures associated with 
data and analytics. Table 3 summarizes key questions and considerations for policy readiness. 
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Table 3. Policy readiness checklist and considerations. 

Policy Readiness Questions Policy Readiness Considerations 
Does your agency have a policy 
regarding the cloud and cloud 
services? If so, what does the policy 
entail? 

The use of the cloud is a requirement for most advanced 
predictive analytics methods such as machine learning. 
Might that policy hurdle be overcome through a university 
or other kind of collaboration? 

Does your agency have an open data 
policy? If so, what does the policy 
entail? Might it limit what kinds of 
data that predictive models can use? 

Open data refers to publicly available data structured in a 
way that enables the data to be fully discoverable and 
usable by end users. 

Does your agency have policies 
regarding the ways analytics are to 
be used for informing decisions and 
specific types of actions? If so, what 
types of decisions and actions are 
involved? 

Agencies may have written policies or procedures 
describing how real-time data and descriptive analytics 
currently are used for informing TMS actions. For 
example, is operator verification required for events? 

How are data and analytics actively 
managed in the TMS? 

Agencies may have documentation and procedural practice 
codified to inform the active management of data and 
analytics in a TMS and at a TMC. 

What policy or cultural barriers 
might limit governing and managing 
data and analytics at your agency? 

Barriers might include lack of precedence in data policy, 
lack of precision in written policies that reflect the realities 
of the TMS, and lack of institutional support. 

SYSTEM READINESS 

System readiness refers to the components necessary for predictive analytics, such as data 
systems, sensors, communications, and cloud infrastructure. Table 4 summarizes key questions 
and considerations for system readiness. 



 

63 

Table 4. System readiness checklist and considerations. 

System Readiness Questions System Readiness Considerations 
Do you have a place to store large 
amounts of data? 

Big-data predictive analytics offers the greatest potential 
value but requires the storage of large amounts of data 
(e.g., terabytes or more per year). 

Do you have computing power and a 
GPU to read and process large amounts 
of data quickly? 

Big-data predictive analytics requires that large amounts 
of data be analyzed—often in realtime or streaming, 
which requires large amounts of computational power 
that exceed the capabilities of most desktop computers 
and even large, on-premises servers.  

Are power and/or communications 
bandwidth (roadside fiber) available for 
traditional edge devices and devices 
with advanced computing capabilities?  

A basic CCTV camera uses 40–60 W. It is estimated 
that an additional 10–30 watts are needed for analytics 
on edge (an approximately 50-percent increase in 
power).  

Is ATMS able to support data volumes 
for building, training, and iterating 
models? If not, consider cloud service 
analytics and predictive analytics in the 
loop. 

While it may be possible to integrate a predictive model 
within an ATMS, the model may likely have to be 
trained externally. Use of the cloud will facilitate the 
development of predictive models. 

DATA READINESS 

Data readiness refers to data collection, quality, storage, and analytic capacity for big-data 
predictive analytics. Table 5 summarizes key questions and considerations for data readiness. 
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Table 5. Data readiness checklist and considerations. 

Data Readiness Questions Data Readiness Considerations 
Does the storage of specific types 
of data raise issues? 

For example, most agencies do not store CCTV video for 
more than 2 was a policy. Likewise, the storage of certain 
data that may contain personally identifiable information may 
not be possible. Some agencies choose not to access specific 
data (e.g., a pothole report) because they are liable if the 
agency does not take immediate action. 

Does your agency have 
sufficiently high-resolution, 
disaggregated data? 

Large volumes of high-resolution, disaggregated data are 
needed to develop predictive models. Often, only aggregate, 
15-min or lower resolution data for long road segments may 
be available. 

Does your agency have many 
years of data? 

Large historical datasets are needed to develop predictive 
models that train for seasonality, time of day, and other 
inherent variabilities in traffic. 

What percentage of data is 
labeled, and what is the quality 
of the labeling?  

Labeled data are data that come with a tag—like a name, a 
type, or a number. The label is the target of interest in the 
prediction. Unlabeled data are data that come with no tag. 
For example, to detect overturned vehicles from video data, 
the video has to have tags that identify overturned vehicles. 
Much more can be done with a labeled dataset. 

Does your agency have ground 
truth data? 

Ground truth data form the target for training or validating 
the predictive model with a labeled dataset. 

Does your agency have ancillary 
data to create labels? 

Data labeling enables predictive analytics algorithms to build 
an accurate understanding of real-world environments and 
conditions. 

Does your agency store raw, 
unprocessed, or unaltered data? 

Archived data to be used in predictive analytics should not be 
imputed or modified per a schema; raw data provide the 
noise that could be picked up by the predictive model. If the 
archived data have been filtered or cleaned, they cannot be 
used effectively for model development. 

Are data representative of the 
entire area of interest (e.g., are 
data more reliable in one area 
versus another)? 

A model developed from 80 percent of the data or area will 
not be useful for the remaining 20 percent. Representative 
data are needed (e.g., winter versus summer months, 
weekdays versus weekends, a subset of the transportation 
network). For example, if cameras are in only a specific area, 
the model might work for that roadway but not necessarily 
for some other roadway. 

ACQUISITION READINESS 

Acquisition readiness refers to processes and practices that support the procurement of the tools, 
data, and technologies that in turn support predictive analytics. Table 6 summarizes key 
questions and considerations for acquisition readiness. 
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Table 6. Acquisition readiness checklist and considerations. 

Acquisition Readiness Questions Acquisition Readiness Considerations 
Is your agency able to purchase cloud 
services? 

Verify that acquisition policies allow cloud services. 

Have you defined the capabilities rather 
than the processes for acquisition? 

Traditionally, organizations specified requirements for 
use of specific software, hardware, or processes. 
Procurement should focus on desired capabilities 
rather than processes. 

Has your agency considered what is 
owned and how it can be shared? 

Whether procuring a dataset, an analytics platform, or 
a predictive model, an agency should consider the 
level of transparency, ownership, and sharing that may 
be needed and weigh that level against relative 
potential costs. 

Do acquisition systems support monthly 
service purchases (e.g., cloud) with 
imprecise costs? 

Costs of cloud services use a pay-as-you-go, or 
pay-for-what-you-use, model; therefore, the cost of 
data storage and processing may vary from month to 
month. 

Will the time required to acquire the 
necessary hardware (servers) to support 
predictive analytics surpass the life of 
the hardware? 

Technology is changing rapidly. If the time required to 
get approval and acquire the necessary hardware to 
support predictive analytics is longer than the life of 
the hardware required, alternative approaches have to 
be considered. With cloud services, hardware is 
managed by the service providers and is considered a 
disposable commodity. Servers are continuously 
decommissioned and updated by the service provider 
at the service provider’s expense. 

Is your agency able to outsource data 
analytics (e.g., consultant support)? 

Expert skill sets, outside of those available at a 
transportation agency, may be required to develop 
predictive models. 

MAINTENANCE READINESS 

Incorporating predictive analytics into a TMS requires ongoing maintenance of hardware, data, 
staff, and the predictive models themselves. Some agencies have incorporated real-time 
descriptive and diagnostic analytics using big data. Few agencies also have acquired edge 
devices with computing capabilities to supplant or complement traditional devices; however, the 
maintenance of embedded predictive models is in the purview of the vendor. Thus, maintenance 
readiness is still a developing consideration. Table 7 summarizes key questions and 
considerations for system readiness that have been drawn from broader industries that have more 
mature predictive analytics pipelines. 
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Table 7. Maintenance readiness checklist and considerations. 

Maintenance Readiness Questions Maintenance Readiness Considerations 
Does your agency have a replacement 
strategy for edge device obsolescence? 

The rate of hardware obsolescence is a challenge from 
both cost and acquisition standpoints. Agencies should 
plan for the ways such edge devices will be upgraded 
or replaced. Such planning may be a relatively easy 
hurdle for agencies with mature processes for 
managing traditional edge devices such as CCTV 
cameras. 

Does your agency have a plan and/or 
resources in place for continuous data 
preparation and maintenance? 

Automated data source changes can affect data 
pipelines and predictive models. Data streams and 
pipelines have to be monitored to identify relevant 
changes and ensure they are working properly. 
Additionally, new sources of data are emerging 
frequently that could help improve prediction 
capabilities. Those data sources should be assessed and 
incorporated into the models as necessary. 

Will protocols or automation be put in 
place to detect when your prediction 
models have to be retrained? 

Predictive algorithms should not be developed as 
set-it-and-forget-it models like traditional models. They 
have to be monitored and updated to reflect changes in 
the data. 

Will you have the resources to retrain 
the predictive models as needed? 

See the considerations contained in table 4. 
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CHAPTER 6. CASE STUDIES: USING PREDICTIVE ANALYTICS TO MANAGE 
TRAFFIC 

This chapter provides lessons learned with using predictive analytics from two transportation 
agencies and one law enforcement agency. The case studies describe the analytics application, 
stage of implementation, challenges to implementation, benefits, and lessons learned to the 
extent that information was available. In summary, real-time descriptive and diagnostic analytics 
for incident detection and response strategies are maturing. Some predictive models have begun 
to demonstrate value; however, they are typically not integrated with a TMS. 

MARYLAND DEPARTMENT OF TRANSPORTATION 

The MDOT Coordinated Highways Action Response Team (CHART) program, through a 
collaboration with the University of Maryland, developed in 2019 a prototype that predicts 
incident clearance times in four time ranges—less than 30 min, 30–60 min, 61–120 min, and 
more than 120 min—based on multiple years of historical crash data from the program’s 
ATMS.(24) The researchers used traditional regression and classification analytics to develop the 
predictive model. The model requires such inputs as vehicle status (e.g., overturned), number of 
vehicles involved, number of responders involved, location, pavement condition, lanes blocked, 
and other data elements available through the CHART ATMS. 

Figure 9 illustrates the first iteration of the tool’s dashboard with the incident clearance time 
prediction model.(23) TMC operators can use the information to plan and select incident response 
strategies—from traveler information messages on DMSs to the field resources needed to reduce 
incident duration, to the consideration of providing alternate routes. Additionally, by knowing 
the likely duration of an incident and rightsizing the response, TMC operators can help reduce 
the likelihood of secondary crashes (e.g., by providing advance queue warning for drivers 
approaching the incident). 
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© 2022 MDOT. 
CT = clearance time. 

Figure 9. Screenshot. MDOT I–95 incident clearance time prediction prototype 
interface.(27) 

The first prototype was limited to incidents involving collisions on I–95 in Maryland between 
Exit 27 and Exit 109. The model was initially trained on data from 2012–15 and tested on data 
from 2016, wherein it correctly predicted the incident clearance time range for 74.3 percent of 
incidents. After a retraining of the model with data from the first 6 mo of 2017, the model’s 
accuracy on the test set increased to 77.2 percent. For certain months, accuracy reached as high 
as 97 percent.(23) The updated model demonstrated an overall 85- to 90-percent reliability. Based 
on that success, the CHART program expanded the project to calibrate predictive models for 
I–495, I–695, and I–70 in Maryland, yielding a confidence level greater than 80 percent. 

CHART included a third phase that developed and calibrated predictive models to estimate 
clearance duration by class of roadway. The tool also expanded to predict the queue length 
associated with the incident. That new capability requires additional data input: either the 
real-time data or the archived detector data (e.g., upstream flow rate and travel speed). The third 
phase is expected to conclude in early 2023. Figure 10 presents the queue prediction interface, 
which consists of three sequential tabs: data source selection, input of related data, and predicted 
queue length. The third tab summarizes inputs on the left and the mean queue length prediction 
on the right.(27) 
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© 2022 MDOT. 

Figure 10. Screenshot. MDOT queue prediction interface.(27) 

One of the key challenges limiting the use of this predictive capability is that the UI is not 
integrated with the CHART ATMS. Consequently, the tool requires operators to manually enter 
information (e.g., vehicle counts, county, number of responders, and number of lanes closed) that 
could readily be pulled from the operators’ ATMS.(1) Thus, when considering the tool through 
the lens of the four architecture illustrations in Computer Service Options for use in Predictive 
Analytics, operators should be aware that the bidirectional arrows would generally lead only 
from the TMS and subsystems as well as from the edge devices to the core computing server. 
That challenge would be met by a planned integration of the predictive capability into the 
ATMS. 

KANSAS CITY INTEGRATED MODELING FOR ROAD CONDITION PREDICTION 

As part of the FHWA-funded Integrated Modeling for Road Condition Prediction (IMRCP) 
project, the Kansas City Scout Traffic Management Center (KC Scout) deployed a system based 
on the Traffic Estimation and Prediction System (TrEPS) platform.(28) Figure 11 presents the 
IMRCP phase 2 data collection, data storage, forecasting, notification, and reporting elements. 

 
1Dicembre, J. 2022. Personal communication in preparation for FHWA Talking TIM Webinar, October 22, 

2022. https://transportationops.org/ondemand-learning/talking-tim-october-2022. 

https://transportationops.org/ondemand-learning/talking-tim-october-2022
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Source: FHWA. 

Figure 11. Flowchart. Traffic estimation and prediction system framework.(29) 

Researchers working with KC Scout’s IMRCP system applied a similar predictive approach for 
Utah DOT, with advances in reporting and interface elements. KC Scout operators who used the 
system report did not receive prediction-based notifications from the tool during the test period 
due to two challenges: 

• Weather data collected from May to December 2016 to calibrate the simulation model’s 
weather adjustment factors did not contain sufficient adverse-weather conditions. 

• Winter storms did not occur during the testing period (September through November 
2017). The predictive model was not explicitly calibrated for night and weekend travel 
when other adverse-weather events occurred. 

A phase 3 effort expanded the model to Kansas City metropolitan area highways, added a second 
machine-learning-based traffic model, and tested the system during the 2018/19 and 2019/20 
winter seasons.(28) System functions are illustrated in figure 12. The system includes: 

• TrEPS traffic demand prediction at zonal levels. 

• Traffic network conditions based on weather, work zone, incident, and special events 
data. 

• The Model of the Environment and Temperature of Roads predicts pavement conditions 
based on National Weather Service data. 
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The research team noted that data needs (e.g., inadequate number of reliable road weather 
sensors and traffic detection stations and difficulty with metadata management) and 
labor-intensive traffic model development needs were key gaps in the use of IMRCP.(28) KC 
Scout operators’ periodic use of the IMRCP tool suggests that the IMRCP road weather data and 
weather forecast may be useful and inform maintenance decision support systems without 
providing an interface to incorporate data directly into the management and operations of 
specific operational strategies or other traffic management decisions.(29) 

 
Source: FHWA. 
AHPS = Advanced Hydrologic Prediction Service; CAP = Common Alerting Protocol; MRMS = 
Multi-Radar/Multi-Sensor System; NDFD = National Digital Forecast Database; RAP = Rapid Refresh; RTMA = 
Real-Time Mesoscale Analysis; Wx = weather. 

Figure 12. Flowchart. IMRCP system functions.(31) 

FHWA funded an evaluation of the IMRCP phase 3 system to ascertain whether IMRCP had an 
operational impact and whether users consider the IMRCP information useful. The study 
confirmed that while operators referred to IMRCP for weather forecast information—in 
particular during winter weather or rain—the system had a minimal operational impact during 
the 2018/19 and 2019/20 winter seasons. The study also noted that the TrEPS and 
machine-learning-based speed prediction models deviated by more than 20 mph and up to 
20 mph from ground truth, respectively, as estimated using loop detector data. The research team 
cited missing, incomplete, and erroneous data as a factor contributing to the poor prediction 
capability. 

The system and components are available on the ITS CodeHub.(32) The system authors also note 
that “the distributed nature of the system, data sources and services require consistent monitoring 
to assure a high quality of service.”(28) IMRCP is a stand-alone system, which means it is not 
integrated with the KC Scout TMS. Thus, a manager or operator would have to open the IMRCP 
software to view map notifications or reports. The manager or operator would process and 
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interpret information from the stand-alone system and compare it with other data systems’ 
information and apply expert judgment to decide whether to implement a real-time action such as 
displaying a traveler information message or to support an offline action such as change or add 
staffing for a future shift. 

TENNESSEE PREDICTIVE ANALYTICS FOR RESOURCE ALLOCATION 

The Tennessee Department of Transportation (TDOT) and various collaborators have developed 
a predictive analytics tool for resource allocation and emergency response planning that 
incorporates prediction.(33) The tool is not yet ready for TMS testing or integration. Nonetheless, 
the TDOT case study illustrates how tools with predictive capabilities could be applied to 
resource planning (how many staff for a given shift) and resource positioning (police beats, 
safety service patrol routes) to reflect situational circumstances such as high winds, snow, and 
planned special events. 

A collaboration between TDOT, the Tennessee Department of Safety & Homeland Security, and 
Vanderbilt University called the Crash Reduction Analyzing Statistical History (CRASH) tool 
evaluated opportunities to improve highway safety patrol vehicles deployment by using a 
predictive model. (34) The Tennessee Highway Patrol (THP) Predictive Analytics program 
developed a model by using both commercially available statistical software to predict the 
likelihood of crashes and historical crash data from its Tennessee Integrated Traffic Analysis 
Network (TITAN), National Oceanic and Atmospheric Administration weather data, and special 
events data (e.g., sporting events, holidays, and festivals).(33) TITAN is a suite of tools developed 
for the electronic collection, submission, and management of all traffic-safety-related data in 
Tennessee, typically collected through the State’s crash report. TITAN accepts reports submitted 
by law enforcement agencies, validates the data contained within reports for completion and 
accuracy, and then stores statistically valid information for use in safety analyses. 

The predictive model generates crash forecasts by 4-h temporal, day, week, and 42-mi2 
geographic blocks. Figure 13 illustrates model inputs and outputs. Sheriffs’ offices can use the 
information to allocate personnel for the greatest impact on traffic safety. The CRASH tool, 
which includes a predictive model, helps supervisors develop weekly enforcement plans and 
assign patrols to the times and places the model suggests the risks of serious crashes are highest. 

The predictive models are 70-percent accurate in identifying areas of concern for alcohol-, drug-, 
and crash-involved incidents. THP uses the information to allocate and geographically position 
law enforcement patrol resources. Key findings have included significant savings in response 
times, with a 19-percent average improvement when roadside assistance trucks were available. 
Emergency responders can be placed closer to accident-prone areas where first responders’ travel 
times and the times first responders are not available due to attending accidents can be reduced. 
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Source: Volpe Center. 
DUI = driving under the influence; GIS = geographic information system; NOAA = National 
Oceanic and Atmospheric Administration; TITAN = Tennessee Integrated Traffic Analysis 
Network. 

Figure 13. Flowchart. TITAN CRASH predictive model.(35) 

A more recent extension of the work between THP and the U.S. Department of Transportation 
(USDOT)/Volpe assessed the value of adding data from a free navigational application to the 
TITAN model.(35) Inclusion of the data was shown to improve geographic resolution from 42 mi2 
to 1 mi2 and temporal resolution from 4 h to 1 h without reducing model accuracy. Figure 14 
illustrates the higher resolution data and enhanced visualization interface the Volpe Center 
developed. Based on the validation and value of the higher resolution data, THP plans to ingest 
the new data into its commercial statistical software and thereby recalibrate its predictive models. 
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Source: USDOT/Volpe. 

Figure 14. Illustration. Enhanced crash propensity model interface.(35) 
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CHAPTER 7. TRENDS, ISSUES TO CONSIDER, AND FUTURE DIRECTION 

Predictive analytics generates statements about future events or the future state of a 
transportation system. Projections of the future have the potential to help managers and operators 
of TMSs reach decisions with greater confidence, timeliness, accuracy, and precision in support 
of making transportation operations safer, more reliable, and more efficient. Predictive analytics 
is a DST that offers agencies the potential to improve the active management and operation of 
TMSs as well as operational strategies and control plans used for managing traffic. 

Many agencies have been moving toward actively managing and operating their TMSs and 
operational strategies. By proactively responding to predicted changes in events that might 
influence roadway conditions or traffic demand, transportation operators may be able to mitigate 
the implications of incidents, prevent delays, and avoid secondary crashes. 

Most predictive efforts are stand-alone and yet to be integrated within agency TMSs. Prediction 
has to be integrated within TMS physical subsystems and components and be structured to 
support operational strategies, functions, actions, and services. Integrating predictive analytics 
within a TMS enables decisionmakers to use the information to improve operations. 

Agencies can prepare to use predictive analytics in the future by considering the following: 

• Supporting TMSs to proactively manage and control traffic—By moving toward 
proactive management and operation of their TMSs and the use of operational strategies, 
agencies position culture, policies, and procedures to support the adoption of predictive 
analytics in the future. 

• Exploring opportunities to consider developing simpler predictive analytics—By 
applying data to develop regression or clustering models, an agency can grow its 
understanding of statistical methods and confidence with predictive model development 
and refinement processes. 

• Embracing modern management practices for data systems—When focusing on real-time 
operations using multiple emerging data sources, data systems design has to be flexible 
and self-adjusting, support distributed storage and processing, decouple hardware and 
software, distribute data governance, and support broad data access and use. Core to 
modern practices for data systems is the ETL method for data storage. Implementing 
these and other modern management facets for data systems may lead agencies to 
consider cloud storage, management, software, and analytics services. 

• Understanding data through the lens of descriptive and diagnostic analytics before 
pursuing predictive analytics—Predictive analytics is the third level in analytics 
advances, requiring mastery of descriptive and diagnostic analytics before its exploitation 
and confident use. An agency pursuing predictive analytics must first have confidence in 
and mastery of descriptive and diagnostic analytics with the intended data, whether that 
mastery is through in-house, contracted, or vendor offerings. As described in chapter 2, 
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descriptive and diagnostic analytics align with the monitoring and calculation stages for 
active traffic management. 

• Considering multiagency or multistate data sharing to facilitate model development—
Given the data requirements for predictive model development—particularly the need for 
a large volume of well-labeled data—coupled with the cost of supporting such systems, 
multistate collaboration on archived data sharing may prove a viable pathway whereby 
agencies with a common predictive need can develop and test predictive models. For 
example, agencies may want to develop a model similar to that developed by MDOT to 
predict incident duration and queue length. Once models have met a specific confidence 
threshold, they can be implemented and tailored for each agency’s operations and 
decision thresholds specific to deployment of resources and DMS messaging. 

• Considering open-source tools and code—Agencies can find many reasons for turning to 
open-source tools and code. Having open-source or agency-owned software and DSTs 
gives agencies the opportunity to make and manage changes when applicable. The ability 
to modify software and supporting APIs in support of the operational strategies agencies 
may use provides agencies the opportunity to make changes in the future. That ability 
also enables agencies to test, evaluate, and make changes to improve those strategies and 
control plans in the future. While agencies may have different TMSs, certain logical 
functions and actions may be common among TMSs. Algorithms or predictive models 
developed by one agency may be used and further refined by another. By sharing 
methods and code, agencies can save resources, validate models, refine models to 
localized needs, and support more robust predictive modeling ecosystems. 

A few other trends also will make predictive analytics more accessible and usable for 
transportation operations within the next decade—if not sooner. The following list describes 
some of the trends: 

• Transportation agencies continue to modify the structures and architectures of their TMSs 
to become more modular. The changes offer the potential for agencies to make 
incremental changes to their TMSs’ capabilities. The capabilities in turn may enable 
agencies to explore the potential for incorporating the use of predictive analytics in 
support of agencies use operational strategies, control plans, or operate TMSs. 

• Agencies may have the ability to purchase or lease software and other products that can 
access and use proprietary black-box predictive and prescriptive capabilities. While 
black-box systems have significant transparency challenges and may deliver the 
prediction to the data subsystem in the form of an API, testing maturity and collaboration 
among agencies harks of the potential to validate the prediction—if not the model. An 
example of that approach is the Eastern Transportation Coalition data marketplace, which 
includes data validation processes and reports for vendor data. 

• Cloud service providers are developing tools that make the process of developing and 
applying predictive analytics far simpler—a form of plug-and-play capabilities. Thus, 
even with only little expertise, agencies may be able to apply machine-learning and 
deep-learning algorithms to develop predictive models. While predictive models do 
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represent an opportunity, that opportunity must be tempered by diligence with regard to 
the ways the model or algorithm will be implemented within the TMS software 
subsystem and whether the model has to live within a cloud environment due to the need 
for specific cloud functions. 

Traffic incidents, road weather, work zone, and arterial management are four areas in which 
predictive capabilities show promise. Decisionmaking around freeway operations strategies such 
as ramp metering and VSLs also may benefit from incorporating predictive analytics into the 
algorithms and software used for supporting specific operational strategies and control plans. 
While vendors may be better positioned to offer predictive capabilities through the services they 
may provide, access to and use of those resources involve tradeoffs related to knowing what may 
be incorporated into the models and the basis of how they operate. Other tradeoffs in the use of 
vendor predictive capabilities are whether the capabilities offer the potential for future changes 
that would better support TMSs’ management and operation. Thus, for agencies with access to or 
in-house expertise and with TMSs that have the ability to incorporate software and tools onto 
their software subsystems, addressing a need through in-house predictive model development 
affords agencies the opportunity to test and evaluate the use of predictive analytics and to 
improve the use of specific operational strategies and control plans. 
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